Sobolev–Poincaré-Type Inequality on Metric Spaces in Terms of Sharp-Maximal Functions
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 140-144
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Sobolev–Poincaré inequality, maximal function, Sobolev class, Borel measure
Mots-clés : Hausdorff space, Lebesgue point.
Mots-clés : Hausdorff space, Lebesgue point.
@article{MZM_2007_81_1_a11,
author = {E. V. Ignat'eva},
title = {Sobolev{\textendash}Poincar\'e-Type {Inequality} on {Metric} {Spaces} in {Terms} of {Sharp-Maximal} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {140--144},
year = {2007},
volume = {81},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a11/}
}
E. V. Ignat'eva. Sobolev–Poincaré-Type Inequality on Metric Spaces in Terms of Sharp-Maximal Functions. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 140-144. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a11/
[1] R. R. Coifman, G. Weiss, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl
[2] J. Dorronsoro, Trans. Amer. Math. Soc., 297:2 (1986), 669–685 | DOI | MR | Zbl
[3] P. Cifuentes, J. Dorronsoro, J. Sueiro, Trans. Amer. Math. Soc., 332:1 (1992), 331–350 | DOI | MR | Zbl
[4] I. A. Ivanishko, V. G. Krotov, Tr. In-ta matem. NAN Belarusi, 14:1 (2005)
[5] A. P. Calderon, Studia Math., 44 (1972), 563–582 | MR | Zbl
[6] A. P. Calderon, R. Scott, Studia Math., 62 (1978), 75–92 | MR | Zbl
[7] R. DeVore, R. Sharpley, Mem. Amer. Math. Soc., 47, no. 293, 1984 | MR | Zbl
[8] P. Hajłasz, P. Koskela, Mem. Amer. Math. Soc., 145, no. 688, 2000 | MR | Zbl
[9] Y. Liu, G. Lu, R. L. Wheeden, Ann. Math., 323:1 (2002), 157–174 | DOI | MR | Zbl