On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 3-16
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the anisotropic Lorentz space of periodic functions. We establish a sharp estimate of the order of approximation for the Besov class by trigonometric polynomials in
Lorentz spaces with anisotropic norm.
Mots-clés :
anisotropic Lorentz space, Besov class, Lebesgue space
Keywords: approximation of function classes, trigonometric polynomial, periodic function, Hölder's inequality.
Keywords: approximation of function classes, trigonometric polynomial, periodic function, Hölder's inequality.
@article{MZM_2007_81_1_a0,
author = {G. A. Akishev},
title = {On {Orders} of {Approximation} of {Function} {Classes} in {Lorentz} spaces with {Anisotropic} {Norm}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--16},
publisher = {mathdoc},
volume = {81},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a0/}
}
G. A. Akishev. On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a0/