On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the anisotropic Lorentz space of periodic functions. We establish a sharp estimate of the order of approximation for the Besov class by trigonometric polynomials in Lorentz spaces with anisotropic norm.
Mots-clés : anisotropic Lorentz space, Besov class, Lebesgue space
Keywords: approximation of function classes, trigonometric polynomial, periodic function, Hölder's inequality.
@article{MZM_2007_81_1_a0,
     author = {G. A. Akishev},
     title = {On {Orders} of {Approximation} of {Function} {Classes} in {Lorentz} spaces with {Anisotropic} {Norm}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a0/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm
JO  - Matematičeskie zametki
PY  - 2007
SP  - 3
EP  - 16
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a0/
LA  - ru
ID  - MZM_2007_81_1_a0
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm
%J Matematičeskie zametki
%D 2007
%P 3-16
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a0/
%G ru
%F MZM_2007_81_1_a0
G. A. Akishev. On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a0/

[1] A. P. Blozinski, “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 146–167 | DOI | MR | Zbl

[2] E. D. Nursultanov, “O koeffitsientakh kratnykh ryadov Fure iz $L_{p}$-prostranstv”, Izv. RAN. Ser. matem., 64:1 (2000), 95–122 | MR | Zbl

[3] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl

[4] T. I. Amanov, Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Alma-Ata, 1976 | MR

[5] Ya. S. Bugrov, “Priblizhenie klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Matem. sb., 64 (106) (1964), 410–418 | MR | Zbl

[6] N. S. Nikolskaya, “Priblizhenie differentsiruemykh funktsii mnogikh peremennykh summami Fure v metrike $L_{p}$”, Sib. matem. zh., 15 (1974), 395–412 | MR | Zbl

[7] V. N. Temlyakov, Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986 | MR | Zbl

[8] N. N. Pustovoitov, “Predstavlenie i priblizhenie periodicheskikh funktsii mnogikh peremennykh s zadannym smeshannym modulem nepreryvnosti”, Anal. Math., 20:1 (1994), 35–48 | DOI | MR | Zbl

[9] E. M. Galeev, “Lineinye poperechniki klassov Gëldera–Nikolskogo periodicheskikh funktsii mnogikh peremennykh”, Matem. zametki, 59:2 (1996), 189–199 | MR | Zbl

[10] Din Zung, “Priblizhenie funktsii mnogikh peremennykh na tore trigonometricheskimi polinomami”, Matem. sb., 131 (173):2 (10) (1986), 251–271 | MR | Zbl

[11] K. I. Babenko, “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:5 (1960), 982–985 | MR | Zbl

[12] S. A. Telyakovskii, “Nekotorye otsenki dlya trigonometricheskikh ryadov s kvazivypuklymi koeffitsientami”, Matem. sb., 63 (105) (1964), 426–444 | MR | Zbl

[13] G. Akishev, “O poryadkakh priblizheniya funktsionalnykh klassov v prostranstve Lorentsa so smeshannoi normoi”, Tr. tsentra im. N. I. Lobachevskogo, 8, Kazan, 2001, 10–11

[14] G. A. Akishev, M. I. Userbekov, “O poryadkakh priblizheniya funktsii mnogikh peremennykh v prostranstve so smeshannoi normoi”, Vestn. KarGU, 2002, no. 3, 4–13 | MR

[15] H. Johonsson, “Embedding of $H_p^\omega$ in some Lorentz spaces”, Research Report, 6, Univer. Umea, 1975

[16] A. P. Uninskii, “Neravenstva dlya tselykh funktsii i trigonometricheskikh polinomov so smeshannoi normoi”, Tr. Vsesoyuznogo simpoziuma po teoremam vlozheniya, 1966 | MR | Zbl

[17] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[18] E. A. Storozhenko, “Teoremy vlozheniya i nailuchshie priblizheniya”, Matem. sb., 97 (139):2 (6) (1975), 230–241 | MR | Zbl