On a matrix-based measure of the degree of coreness of a node in a network
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 908-919.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper focuses on the right and left eigenvectors of a network matrix that belong to the largest eigenvalue. It is shown that each of vector entries measures the walk centrality of the corresponding node's position in the network's link structure and of the positions of the node's adjacent nodes; as a result, it indicates to which degree the node can be associated with the structure's core, i.e., the structural coreness of the node. The relationship between the vectors' coordinates and the position of the nodes, as well as the actual computation of the coordinates, is based on an iterative computational scheme known as the power method. The paper studies the method's convergence for networks of different structure. Some possible applications are discussed. The paper also includes a numerical example dealing with a real network of $197$ nodes and $780$ links.
@article{MZM_2006_80_6_a8,
     author = {V. M. Chelnokov and V. L. Zefirova},
     title = {On a matrix-based measure of the degree of coreness of a node in a network},
     journal = {Matemati\v{c}eskie zametki},
     pages = {908--919},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a8/}
}
TY  - JOUR
AU  - V. M. Chelnokov
AU  - V. L. Zefirova
TI  - On a matrix-based measure of the degree of coreness of a node in a network
JO  - Matematičeskie zametki
PY  - 2006
SP  - 908
EP  - 919
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a8/
LA  - ru
ID  - MZM_2006_80_6_a8
ER  - 
%0 Journal Article
%A V. M. Chelnokov
%A V. L. Zefirova
%T On a matrix-based measure of the degree of coreness of a node in a network
%J Matematičeskie zametki
%D 2006
%P 908-919
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a8/
%G ru
%F MZM_2006_80_6_a8
V. M. Chelnokov; V. L. Zefirova. On a matrix-based measure of the degree of coreness of a node in a network. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 908-919. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a8/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl

[2] Dzh. Golub, Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999 | MR | Zbl

[3] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 | MR | Zbl

[4] I. M. Gelfand, Lektsii po lineinoi algebre, Nauka, M., 1966 | MR | Zbl

[5] K. Berzh, Teoriya grafov i ee primeneniya, IL, M., 1962 | MR | Zbl

[6] D. Tsvetkovich, M. Dub, Kh. Zakhs, Spektry grafov, Naukova dumka, Kiev, 1984 | MR | Zbl

[7] S. P. Borgatti, M. G. Everett, “Models of core/periphery structures”, Social Networks, 21:4 (2000), 375–395 | DOI

[8] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment”, J. ACM, 46:5 (1999), 604–632 | DOI | MR | Zbl

[9] S. Brin, L. Page, “The anatomy of a large-scale hypertextual web-search engine”, Proceedings of the 7th WWW Conference, Brisbane, Australia, 1998, 107–117

[10] W. Kintsch, D. M. Welsch, “The construction-integration model: A framework for studying memory for text”, Relating Theory and Data: Essays on Human Memory, eds. W. Hockley, S. Lewandowsky, Erlbaum, Hillsdale, NJ, 1991, 367–386

[11] G. Storms, P. De Boeck, W. Ruts, “Prototype and exemplar-based information in natural language categories”, J. Memory Language, 42:1 (2000), 51–73 | DOI

[12] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[13] V. M. Chelnokov, V. L. Zephyrova, “Hypertext macrodynamics”, Lecture Notes in Computer Sci., 1015, Springer-Verlag, Berlin, 1995, 105–120

[14] V. M. Chelnokov, V. L. Zephyrova, “Collective phenomena in hypertext networks”, Proceedings of the Hypertext' 97 Conference (Southhampton, UK), ACM, 1997, 220–221

[15] S. P. Borgatti, “Centrality and AIDS”, Connections, 18:1 (1995), 112–115

[16] S. Eubank et al., “Modelling disease outbreakes in realistic urban social networks”, Nature, 429:6988 (2004), 180–184 | DOI

[17] C. L. Barrett, S. G. Eubank, J. P. Smith, “If smallpox strikes Portland...”, Scientific American, 292:3 (2005), 42–49