Optimal control in nonlinear infinite-dimensional systems with nondifferentiability of two types
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 885-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal control problem for systems described by nonlinear equations of elliptic type. If the nonlinear term in the equation is smooth and the nonlinearity increases at a comparatively low rate of growth, then necessary conditions for optimality can be obtained by well-known methods. For small values of the nonlinearity exponent in the smooth case, we propose to approximate the state operator by a certain differentiable operator. We show that the solution of the approximate problem obtained by standard methods ensures that the optimality criterion for the initial problem is close to its minimal value. For sufficiently large values of the nonlinearity exponent, the dependence of the state function on the control is nondifferentiable even under smoothness conditions for the operator. But this dependence becomes differentiable in a certain extended sense, which is sufficient for obtaining necessary conditions for optimality. Finally, if there is no smoothness and no restrictions are imposed on the nonlinearity exponent of the equation, then a smooth approximation of the state operator is possible. Next, we obtain necessary conditions for optimality of the approximate problem using the notion of extended differentiability of the solution of the equation approximated with respect to the control, and then we show that the optimal control of the approximated extremum problem minimizes the original functional with arbitrary accuracy.
@article{MZM_2006_80_6_a6,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Optimal control in nonlinear infinite-dimensional systems with nondifferentiability of two types},
     journal = {Matemati\v{c}eskie zametki},
     pages = {885--901},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a6/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Optimal control in nonlinear infinite-dimensional systems with nondifferentiability of two types
JO  - Matematičeskie zametki
PY  - 2006
SP  - 885
EP  - 901
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a6/
LA  - ru
ID  - MZM_2006_80_6_a6
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Optimal control in nonlinear infinite-dimensional systems with nondifferentiability of two types
%J Matematičeskie zametki
%D 2006
%P 885-901
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a6/
%G ru
%F MZM_2006_80_6_a6
S. Ya. Serovaǐskiǐ. Optimal control in nonlinear infinite-dimensional systems with nondifferentiability of two types. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 885-901. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a6/

[1] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[2] Zh.-L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR | Zbl

[3] V. I. Averbukh, O. G. Smolyanov, “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | MR | Zbl

[4] A. Frelikher, V. Bukher, Differentsialnoe ischislenie v vektornykh prostranstvakh bez normy, Mir, M., 1970 | MR | Zbl

[5] Zh. Dedonne, Osnovy sovremennogo analiza, Mir, M., 1964

[6] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl

[7] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[8] S. Ya. Serovaiskii, “Printsipy rasshirennoi differentsiruemosti”, Izv. NAN Respubliki Kazakhstan. Ser. fiz.-matem., 1995, no. 1, 44–48 | MR

[9] S. Ya. Serovaiskii, “Neobkhodimye i dostatochnye usloviya optimalnosti dlya sistem, opisyvaemykh nelineinymi uravneniyami ellipticheskogo tipa”, Sib. matem. zhurn., 32:3 (1991), 141–150 | MR | Zbl

[10] S. Ya. Serovaiskii, “Optimalnoe upravlenie dlya uravnenii ellipticheskogo tipa s negladkoi nelineinostyu”, Differents. uravneniya, 39:10 (2003), 1420–1424 | MR | Zbl

[11] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[12] V. I. Ivanenko, V. S. Melnik, Variatsionnye metody v zadachakh upravleniya dlya sistem s raspredelennymi parametrami, Naukova dumka, Kiev, 1988 | MR | Zbl

[13] U. E. Raitum, Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989 | MR | Zbl

[14] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR | Zbl

[15] A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[16] L. W. Neustadt, “An abstract variational theory with applications to a broad class of optimization problems. I. General theory”, SIAM J. Control, 4 (1966), 505–527 ; “II. Applications”, SIAM J. Control, 5 (1967), 90–137 | DOI | MR | Zbl | DOI | MR | Zbl

[17] V. A. Yakubovich, “K abstraktnoi teorii optimalnogo upravleniya”, Sib. matem. zh., 18:3 (1977), 685–707 ; 19:2 (1978), 436–460 ; 20:4 (1979), 885–910 ; 20:5, 1131–1159 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[18] S. Ya. Serovaiskii, “Differentsirovanie obratnoi funktsii v prostranstvakh bez normy”, Funktsion. analiz i ego prilozh., 27:4 (1993), 84–87 | MR | Zbl

[19] Zh.-L. Lions, Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR | Zbl

[20] S. Ya. Serovaiskii, “Priblizhennoe reshenie zadachi optimalnogo upravleniya dlya singulyarnogo uravneniya ellipticheskogo tipa s negladkoi nelineinostyu”, Izv. vuzov. Matem., 2004, no. 1, 80–86 | MR | Zbl

[21] Funktsionalnyi analiz, ed. S. G. Krein, Nauka, M., 1972 | MR | Zbl

[22] T. Zolezzi, “A characterizations of well-posed optimal control systems”, SIAM J. Control Optimization, 19:5 (1981), 604–616 | DOI | MR | Zbl

[23] F. P. Vasilev, Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR | Zbl