Negative asymptotic topological dimension, a new condensate, and their relation to the quantized Zipf law
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 856-863.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of weight for the asymptotic topological dimension. Planck's formula for black-body radiation is refined. We introduce the notion of negative asymptotic topological dimension (of hole dimension). The condensate in the hole dimension is applied to the quantized Zipf law for frequency dictionaries (obtained earlier by the author).
@article{MZM_2006_80_6_a4,
     author = {V. P. Maslov},
     title = {Negative asymptotic topological dimension, a new condensate, and their relation to the quantized {Zipf} law},
     journal = {Matemati\v{c}eskie zametki},
     pages = {856--863},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a4/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Negative asymptotic topological dimension, a new condensate, and their relation to the quantized Zipf law
JO  - Matematičeskie zametki
PY  - 2006
SP  - 856
EP  - 863
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a4/
LA  - ru
ID  - MZM_2006_80_6_a4
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Negative asymptotic topological dimension, a new condensate, and their relation to the quantized Zipf law
%J Matematičeskie zametki
%D 2006
%P 856-863
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a4/
%G ru
%F MZM_2006_80_6_a4
V. P. Maslov. Negative asymptotic topological dimension, a new condensate, and their relation to the quantized Zipf law. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 856-863. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a4/

[1] V. P. Maslov, “Quantum linguistic statistics”, Russ. J. Math. Phys., 13:3 (2006), 315–325 | DOI | MR | Zbl

[2] V. P. Maslov, T. V. Maslova, “O zakone Tsipfa i rangovykh raspredeleniyakh v lingvistike i semiotike”, Matem. zametki, 80:5 (2006), 718–732 | MR | Zbl

[3] V. P. Maslov, “O minimizatsii statisticheskogo riska pokupok na rynke nedvizhimosti i tovarov dlitelnogo polzovaniya”, Dokl. RAN, 411:6 (2006), 745–746

[4] V. P. Maslov, “Fazovye perekhody nulevogo roda i kvantovanie zakona Tsipfa”, TMF, 150:1 (2007), 118–142 | MR | Zbl

[5] V. P. Maslov, “Nelineinoe srednee v ekonomike”, Matem. zametki, 78:3 (2005), 377–395 | MR | Zbl

[6] V. P. Maslov, “Ob odnoi obschei teoreme teorii mnozhestv, privodyaschei k raspredeleniyu Gibbsa, Boze–Einshteina, Pareto i zakonu Tsipfa–Mandelbrota dlya fondovogo rynka”, Matem. zametki, 78:6 (2005), 870–877 | MR | Zbl

[7] V. P. Maslov, “Utochnenie zakona Tsipfa dlya chastotnykh slovarei”, Dokl. RAN, 405:5 (2005), 591–594 | MR | Zbl

[8] V. P. Maslov, “Zakon “otsutstviya predpochteniya” i sootvetstvuyuschee raspredelenie v chastotnoi teorii veroyatnostei”, Matem. zametki, 80:2 (2006), 220–230 | MR | Zbl

[9] V. P. Maslov, “Zakon bolshikh uklonenii v teorii chisel. Vychislimaya funktsiya ot mnogikh argumentov i dekodirovanie”, Dokl. RAN, 404:6 (2005), 731–736 | MR | Zbl

[10] M. Gromov, “Asymptotic invariants of infinite groups”, Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR | Zbl

[11] A. Dranishnikov, J. Smith, “Asymptotic dimension of discrete groups”, Fund. Math., 189:1 (2006), 27–34 | DOI | MR | Zbl

[12] L. D. Landau, E. M. Livshits, Teoreticheskaya fizika. Tom 5. Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl

[13] O. Viro, “Dequantization of real algebraic geometry on logarithmic paper”, 3rd European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 135–146 | MR | Zbl