Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_6_a4, author = {V. P. Maslov}, title = {Negative asymptotic topological dimension, a new condensate, and their relation to the quantized {Zipf} law}, journal = {Matemati\v{c}eskie zametki}, pages = {856--863}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a4/} }
TY - JOUR AU - V. P. Maslov TI - Negative asymptotic topological dimension, a new condensate, and their relation to the quantized Zipf law JO - Matematičeskie zametki PY - 2006 SP - 856 EP - 863 VL - 80 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a4/ LA - ru ID - MZM_2006_80_6_a4 ER -
V. P. Maslov. Negative asymptotic topological dimension, a new condensate, and their relation to the quantized Zipf law. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 856-863. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a4/
[1] V. P. Maslov, “Quantum linguistic statistics”, Russ. J. Math. Phys., 13:3 (2006), 315–325 | DOI | MR | Zbl
[2] V. P. Maslov, T. V. Maslova, “O zakone Tsipfa i rangovykh raspredeleniyakh v lingvistike i semiotike”, Matem. zametki, 80:5 (2006), 718–732 | MR | Zbl
[3] V. P. Maslov, “O minimizatsii statisticheskogo riska pokupok na rynke nedvizhimosti i tovarov dlitelnogo polzovaniya”, Dokl. RAN, 411:6 (2006), 745–746
[4] V. P. Maslov, “Fazovye perekhody nulevogo roda i kvantovanie zakona Tsipfa”, TMF, 150:1 (2007), 118–142 | MR | Zbl
[5] V. P. Maslov, “Nelineinoe srednee v ekonomike”, Matem. zametki, 78:3 (2005), 377–395 | MR | Zbl
[6] V. P. Maslov, “Ob odnoi obschei teoreme teorii mnozhestv, privodyaschei k raspredeleniyu Gibbsa, Boze–Einshteina, Pareto i zakonu Tsipfa–Mandelbrota dlya fondovogo rynka”, Matem. zametki, 78:6 (2005), 870–877 | MR | Zbl
[7] V. P. Maslov, “Utochnenie zakona Tsipfa dlya chastotnykh slovarei”, Dokl. RAN, 405:5 (2005), 591–594 | MR | Zbl
[8] V. P. Maslov, “Zakon “otsutstviya predpochteniya” i sootvetstvuyuschee raspredelenie v chastotnoi teorii veroyatnostei”, Matem. zametki, 80:2 (2006), 220–230 | MR | Zbl
[9] V. P. Maslov, “Zakon bolshikh uklonenii v teorii chisel. Vychislimaya funktsiya ot mnogikh argumentov i dekodirovanie”, Dokl. RAN, 404:6 (2005), 731–736 | MR | Zbl
[10] M. Gromov, “Asymptotic invariants of infinite groups”, Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR | Zbl
[11] A. Dranishnikov, J. Smith, “Asymptotic dimension of discrete groups”, Fund. Math., 189:1 (2006), 27–34 | DOI | MR | Zbl
[12] L. D. Landau, E. M. Livshits, Teoreticheskaya fizika. Tom 5. Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl
[13] O. Viro, “Dequantization of real algebraic geometry on logarithmic paper”, 3rd European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 135–146 | MR | Zbl