Linearizability of Poisson structures around singular symplectic leaves
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 825-837.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linearization problem for a Poisson structure near a singular symplectic leaf of nonzero dimension is studied. We obtain the following generalization of the Conn linearization theorem: if the transverse Lie algebra of the leaf is semisimple and compact, then the Poisson structure is linearizable, provided that certain cohomological obstructions vanish.
@article{MZM_2006_80_6_a2,
     author = {Yu. M. Vorob'ev},
     title = {Linearizability of {Poisson} structures around singular symplectic leaves},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--837},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a2/}
}
TY  - JOUR
AU  - Yu. M. Vorob'ev
TI  - Linearizability of Poisson structures around singular symplectic leaves
JO  - Matematičeskie zametki
PY  - 2006
SP  - 825
EP  - 837
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a2/
LA  - ru
ID  - MZM_2006_80_6_a2
ER  - 
%0 Journal Article
%A Yu. M. Vorob'ev
%T Linearizability of Poisson structures around singular symplectic leaves
%J Matematičeskie zametki
%D 2006
%P 825-837
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a2/
%G ru
%F MZM_2006_80_6_a2
Yu. M. Vorob'ev. Linearizability of Poisson structures around singular symplectic leaves. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 825-837. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a2/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl

[2] A. Weinstein, “The local structure of Poisson manifolds”, J. Differential Geom., 18:3 (1983), 523–557 | MR | Zbl

[3] J. Conn, “Normal forms for smooth Poisson structures”, Ann. of Math. (2), 121:3 (1985), 565–593 | DOI | MR | Zbl

[4] J.-P. Dufour, “Linéarisation de certaines structures de Poisson”, J. Differential Geom., 32:2 (1990), 415–428 | MR | Zbl

[5] N. T. Zung, A geometric proof of Conn's linearization theorem for analytic Poisson structures, , 2002 arXiv: math.SG/0207263

[6] R. L. Fernandes, P. Monnier, “Linearization of Poisson brackets”, Lett. Math. Phys., 69 (2004), 89–114 | DOI | MR | Zbl

[7] Yu. Vorobjev, “Coupling tensors and Poisson geometry near a single symplectic leaf”, Lie Algebroids and related topics in differential geometry, Banach Center Publ., 54, Warszawa, 2001, 249–274 | MR | Zbl

[8] Yu. M. Vorobev, “O linearizovannykh puassonovykh strukturakh”, Matem. zametki, 70:4 (2001), 486–493 | MR | Zbl

[9] Yu. Vorobjev, Poisson equivalence over a symplectic leaf, , 2005 arXiv: math.SG/0503628v1 | MR

[10] I. Vaisman, “Coupling Poisson and Jacobi structures on foliated manifolds”, J. Geom. Method. Mod. Phys., 1:5 (2004), 607–637 | DOI | MR | Zbl

[11] B. L. Davis, A. Wade, Nonlinearizability of certain Poisson structures near a symplectic leaf, , 2005 arXiv: math.SG/0406611 | MR

[12] O. Brahic, Normal forms of Poisson structures near a symplectic leaf, , 2004 arXiv: math.SG/0403136

[13] M. Crainic, R. L. Fernandes, Rigidity and flexibility in Poisson geometry, , 2005 arXiv: math.DG/0503145v1 | MR

[14] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[15] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Math., 118, Birkhäuser, Boston, 1994 | MR | Zbl