Linearizability of Poisson structures around singular symplectic leaves
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 825-837

Voir la notice de l'article provenant de la source Math-Net.Ru

The linearization problem for a Poisson structure near a singular symplectic leaf of nonzero dimension is studied. We obtain the following generalization of the Conn linearization theorem: if the transverse Lie algebra of the leaf is semisimple and compact, then the Poisson structure is linearizable, provided that certain cohomological obstructions vanish.
@article{MZM_2006_80_6_a2,
     author = {Yu. M. Vorob'ev},
     title = {Linearizability of {Poisson} structures around singular symplectic leaves},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--837},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a2/}
}
TY  - JOUR
AU  - Yu. M. Vorob'ev
TI  - Linearizability of Poisson structures around singular symplectic leaves
JO  - Matematičeskie zametki
PY  - 2006
SP  - 825
EP  - 837
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a2/
LA  - ru
ID  - MZM_2006_80_6_a2
ER  - 
%0 Journal Article
%A Yu. M. Vorob'ev
%T Linearizability of Poisson structures around singular symplectic leaves
%J Matematičeskie zametki
%D 2006
%P 825-837
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a2/
%G ru
%F MZM_2006_80_6_a2
Yu. M. Vorob'ev. Linearizability of Poisson structures around singular symplectic leaves. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 825-837. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a2/