Sharpness conditions in multidimensional analogs of V.\, A.~Markov's inequality
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 950-953.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2006_80_6_a15,
     author = {V. I. Skalyga},
     title = {Sharpness conditions in multidimensional analogs of {V.\,} {A.~Markov's} inequality},
     journal = {Matemati\v{c}eskie zametki},
     pages = {950--953},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a15/}
}
TY  - JOUR
AU  - V. I. Skalyga
TI  - Sharpness conditions in multidimensional analogs of V.\, A.~Markov's inequality
JO  - Matematičeskie zametki
PY  - 2006
SP  - 950
EP  - 953
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a15/
LA  - ru
ID  - MZM_2006_80_6_a15
ER  - 
%0 Journal Article
%A V. I. Skalyga
%T Sharpness conditions in multidimensional analogs of V.\, A.~Markov's inequality
%J Matematičeskie zametki
%D 2006
%P 950-953
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a15/
%G ru
%F MZM_2006_80_6_a15
V. I. Skalyga. Sharpness conditions in multidimensional analogs of V.\, A.~Markov's inequality. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 950-953. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a15/

[1] V. I. Skalyga, Izv. RAN. Ser. matem., 69:3 (2005), 179–192 | MR | Zbl

[2] V. A. Markov, O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, Izd-vo Imperatorskoi Akademii nauk, SPb, 1892

[3] A. C. Schaeffer, R. J. Duffin, Bull. Amer. Math. Soc., 44:4 (1938), 289–297 | DOI | MR | Zbl

[4] V. I. Skalyga, Matem. zametki, 68:1 (2000), 146–150 | MR | Zbl

[5] V. I. Skalyga, Izv. RAN. Ser. matem., 65:6 (2001), 129–172 | MR | Zbl

[6] G. A. Munoz, Y. Sarantopoulos, Math. Proc. Cambridge Philos. Soc., 133 (2002), 515–530 | DOI | MR | Zbl

[7] Y. Sarantopoulos, Math. Proc. Cambridge Philos. Soc., 110 (1991), 307–312 | DOI | MR | Zbl

[8] O. D. Kellogg, Math. Z., 27:1 (1928), 55–64 | DOI | MR