Isomorphism between the solution spaces of a discrete convolution equation and a convolution equation on the space of entire functions
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 733-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the problem of reconstructing an arbitrary solution of a homogeneous convolution equation from its values at integer points of the real axis.
@article{MZM_2006_80_5_a8,
     author = {V. V. Napalkov and V. E. Kim},
     title = {Isomorphism between the solution spaces of a discrete convolution equation and a convolution equation on the space of entire functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {733--750},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a8/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - V. E. Kim
TI  - Isomorphism between the solution spaces of a discrete convolution equation and a convolution equation on the space of entire functions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 733
EP  - 750
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a8/
LA  - ru
ID  - MZM_2006_80_5_a8
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A V. E. Kim
%T Isomorphism between the solution spaces of a discrete convolution equation and a convolution equation on the space of entire functions
%J Matematičeskie zametki
%D 2006
%P 733-750
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a8/
%G ru
%F MZM_2006_80_5_a8
V. V. Napalkov; V. E. Kim. Isomorphism between the solution spaces of a discrete convolution equation and a convolution equation on the space of entire functions. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 733-750. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a8/

[1] A. F. Leontev, Obobscheniya ryadov eksponent, Nauka, M., 1981 | MR | Zbl

[2] Ya. I. Khurgin, V. P. Yakovlev, Finitnye funktsii v fizike i tekhnike, Nauka, M., 1971 | Zbl

[3] S. V. Popenov, “O vesovom prostranstve funktsii, analiticheskikh v neogranichennoi vypukloi oblasti v $\mathbb C^m$”, Matem. zametki, 40:3 (1986), 374–384 | MR | Zbl

[4] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR | Zbl

[5] I. F. Krasichkov-Ternovskii, “Odnorodnoe uravnenie tipa svertki na vypuklykh oblastyakh”, Dokl. AN SSSR, 197:1 (1971), 29–31

[6] A. S. Krivosheev, V. V. Napalkov, “Kompleksnyi analiz i operatory svertki”, UMN, 47:6 (1992), 3–58 | MR | Zbl

[7] R. Meise, K. Schwerdtfeger, B. A. Taylor, “On kernels of slowly decreasing convolution operators”, Doğa Mat., 10:1 (1986), 176–197 | MR | Zbl

[8] V. V. Napalkov, “O bazise v prostranstve reshenii uravnenii svertki”, Matem. zametki, 43:1 (1988), 44–55 | MR | Zbl

[9] A. S. Krivosheev, “Bazis Shaudera v prostranstve reshenii odnorodnogo uravneniya svertki”, Matem. zametki, 57:1 (1995), 57–71 | MR | Zbl

[10] V. A. Tkachenko, “Spektralnaya teoriya v prostranstvakh analiticheskikh funktsionalov dlya operatorov, porozhdaemykh umnozheniem na nezavisimuyu peremennuyu”, Matem. sb., 112:3 (1980), 421–466 | MR | Zbl

[11] M. M. Dragilev, V. P. Zakharyuta, Yu. F. Korobeinik, “Dvoistvennaya svyaz mezhdu nekotorymi voprosami teorii bazisa i interpolyatsii”, Dokl. AN SSSR, 215:3 (1974), 522–525 | MR | Zbl

[12] I. A. Shagapov, Invariantnye podprostranstva v prostranstvakh chislovykh posledovatelnostei, Diss. ... k.f.-m.n., IMVTs UNTs RAN, Ufa, 1999

[13] Sebashtyan-i-Silva, “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77

[14] A. I. Markushevich, Teoriya analiticheskikh funktsii, 2, Nauka, M., 1968 | MR

[15] A. V. Bratischev, Yu. F. Korobeinik, “O nekotorykh kharakteristikakh rosta subgarmonicheskikh funktsii”, Matem. sb., 106:1 (1978), 44–65 | MR | Zbl

[16] R. Edvards, Funktsionalnyi analiz, Mir, M., 1969

[17] A. V. Bratischev, “Odin tip otsenok snizu tselykh funktsii konechnogo poryadka i nekotorye prilozheniya”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 451–475 | MR | Zbl

[18] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl