An extremal problem for even positive definite entire functions of exponential type
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 712-717.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an extremal problem for even positive definite entire functions of exponential type with zero mean with power weight on the semiaxis. This problem is related to the multidimensional Jackson–Stechkin theorem in the space $L_{2}(\mathbb R^{n})$.
@article{MZM_2006_80_5_a6,
     author = {D. V. Gorbachev and S. A. Strankovskii},
     title = {An extremal problem for even positive definite entire functions of exponential type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {712--717},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a6/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - S. A. Strankovskii
TI  - An extremal problem for even positive definite entire functions of exponential type
JO  - Matematičeskie zametki
PY  - 2006
SP  - 712
EP  - 717
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a6/
LA  - ru
ID  - MZM_2006_80_5_a6
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A S. A. Strankovskii
%T An extremal problem for even positive definite entire functions of exponential type
%J Matematičeskie zametki
%D 2006
%P 712-717
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a6/
%G ru
%F MZM_2006_80_5_a6
D. V. Gorbachev; S. A. Strankovskii. An extremal problem for even positive definite entire functions of exponential type. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 712-717. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a6/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[2] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 2, Nauka, M., 1966 | MR

[3] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR | Zbl

[4] D. V. Gorbachev, Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya, TulGU, Tula, 2004

[5] N. I. Chernykh, “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74

[6] B. F. Logan, “Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions”, SIAM J. Math. Anal., 14:2 (1983), 253–257 | DOI | MR | Zbl

[7] V. A. Yudin, “Mnogomernaya teorema Dzheksona v $L_2$”, Matem. zametki, 29:2 (1981), 309–315 | MR | Zbl

[8] A. V. Moskovskii, “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb{R}^n)$ i $L_{p,\lambda}(\mathbb{R}_{+})$”, Izv. TulGU. Ser. matem., 3:1 (1997), 44–70 | MR

[9] A. G. Babenko, “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2(\mathbb R^m)$”, Tr. IMM UrO RAN, 5 (1998), 183–198 | Zbl

[10] N. I. Chernykh, V. V. Arestov, “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and Function Spaces, Proc. Inter. Conf. (Gdansk, 1979), North-Holland, Amsterdam, 1981, 25–43 | MR | Zbl

[11] V. V. Arestov, A. G. Babenko, “On the optimal point in Jackson's inequality in $L^2(-\infty,\infty)$ with the second modulus of continuity”, East J. Approximation, 10:1–2 (2004), 201–214 | MR | Zbl

[12] A. G. Babenko, Pryamye teoremy teorii priblizheniya v $L^2$ i rodstvennye ekstremalnye zadachi dlya polozhitelno opredelennykh funktsii, Diss. ... d.f.-m.n., Ekaterinburg, 2004

[13] E. E. Berdysheva, “Dve vzaimosvyazannye ekstremalnye zadachi dlya tselykh funktsii mnogikh peremennykh”, Matem. zametki, 66:3 (1999), 336–350 | MR | Zbl

[14] E. E. Berdysheva, “An extremal problem for entire functions of exponential type with non-negative mean value”, East J. Approximation, 3:4 (1997), 393–401 | MR | Zbl

[15] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522

[16] S. N. Vasilev, Approksimatsiya funktsii trigonometricheskimi polinomami v $L^2$ i fraktalnymi funktsiyami v $C$, Diss. ... k.f.-m.n., Ekaterinburg, 2002