Refined theorems of approximation theory in the space of $p$-absolutely continuous functions
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 701-711

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove direct and inverse theorems of approximation theory in the space of $p$-absolutely continuous functions which generalize Terekhin's results in the same way as Timan's results in $L_p$ generalize the classical theorems of approximation theory. The main theorems are refined for functions with quasimonotone Fourier coefficients and, in a number of cases, the resulats are shown to be sharp.
@article{MZM_2006_80_5_a5,
     author = {S. S. Volosivets},
     title = {Refined theorems of approximation theory in the space of $p$-absolutely continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {701--711},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a5/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Refined theorems of approximation theory in the space of $p$-absolutely continuous functions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 701
EP  - 711
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a5/
LA  - ru
ID  - MZM_2006_80_5_a5
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Refined theorems of approximation theory in the space of $p$-absolutely continuous functions
%J Matematičeskie zametki
%D 2006
%P 701-711
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a5/
%G ru
%F MZM_2006_80_5_a5
S. S. Volosivets. Refined theorems of approximation theory in the space of $p$-absolutely continuous functions. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 701-711. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a5/