Refined theorems of approximation theory in the space of $p$-absolutely continuous functions
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 701-711
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove direct and inverse theorems of approximation theory in the space of $p$-absolutely continuous functions which generalize Terekhin's results in the same way as Timan's results in $L_p$ generalize the classical theorems of approximation theory. The main theorems are refined for functions with quasimonotone Fourier coefficients and, in a number of cases, the resulats are shown to be sharp.
@article{MZM_2006_80_5_a5,
author = {S. S. Volosivets},
title = {Refined theorems of approximation theory in the space of $p$-absolutely continuous functions},
journal = {Matemati\v{c}eskie zametki},
pages = {701--711},
publisher = {mathdoc},
volume = {80},
number = {5},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a5/}
}
TY - JOUR AU - S. S. Volosivets TI - Refined theorems of approximation theory in the space of $p$-absolutely continuous functions JO - Matematičeskie zametki PY - 2006 SP - 701 EP - 711 VL - 80 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a5/ LA - ru ID - MZM_2006_80_5_a5 ER -
S. S. Volosivets. Refined theorems of approximation theory in the space of $p$-absolutely continuous functions. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 701-711. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a5/