Spherical convolution operators in spaces of variable H\"older order
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 683-695.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the images of operators of the type of spherical potential of complex order and of spherical convolutions with kernels depending on the inner product and having a spherical harmonic multiplier with a given asymptotics at infinity. Using theorems on the action of these operators in Hölder-variable spaces, we construct isomorphisms of these spaces. In Hölder spaces of variable order, we study the action of spherical potentials with singularities at the poles of the sphere. Using stereographic projection, we obtain similar isomorphisms of Hölder-variable spaces with respect to $n$-dimensional Euclidean space (in the case of its one-point compactification) with some power weights.
@article{MZM_2006_80_5_a3,
     author = {B. G. Vakulov},
     title = {Spherical convolution operators in spaces of variable {H\"older} order},
     journal = {Matemati\v{c}eskie zametki},
     pages = {683--695},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a3/}
}
TY  - JOUR
AU  - B. G. Vakulov
TI  - Spherical convolution operators in spaces of variable H\"older order
JO  - Matematičeskie zametki
PY  - 2006
SP  - 683
EP  - 695
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a3/
LA  - ru
ID  - MZM_2006_80_5_a3
ER  - 
%0 Journal Article
%A B. G. Vakulov
%T Spherical convolution operators in spaces of variable H\"older order
%J Matematičeskie zametki
%D 2006
%P 683-695
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a3/
%G ru
%F MZM_2006_80_5_a3
B. G. Vakulov. Spherical convolution operators in spaces of variable H\"older order. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 683-695. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a3/

[1] P. M. Pavlov, S. G. Samko, “Opisanie prostranstv $L_p^\alpha(S_{n-1})$ v terminakh gipersingulyarnykh integralov”, Dokl. AN SSSR, 276:3 (1984), 546–550 | MR | Zbl

[2] S. G. Samko, “Singulyarnye integraly po sfere i postroenie kharakteristiki po simvolu”, Izv. vuzov. Matem., 1983, no. 4, 28–42 | MR | Zbl

[3] S. G. Samko, B. G. Vakulov, “On equivalent norms in fractional order functions spaces of continuous functions on the unit sphere”, Fract. Calc. Appl. Anal., 3:4 (2000), 401–433 | MR | Zbl

[4] S. G. Samko, “Hypersingular integrals and their applications”, Analytical Methods and Special Functions, 5, Taylor Francis, London–New York, 2002, 358–373 | MR | Zbl

[5] B. G. Vakulov, “Operatory tipa potentsiala na sfere v obobschennykh klassakh Gëldera”, Izv. vuzov. Matem., 1986, no. 11, 66–69 | MR | Zbl

[6] B. G. Vakulov, Operatory tipa potentsiala na sfere v obobschennykh prostranstvakh Gëldera, Dep. VINITI No 1563-V86 (06.05.1986), Rostovskii un-t, Rostov-na-Donu, 1986

[7] B. G. Vakulov, “Sfericheskie operatory tipa potentsiala v obobschennykh prostranstvakh Gëldera s vesom na sfere”, Izv. vuzov Sev.-Kavk. regiona. Estestv. nauki, 1999, no. 4, 5–10 | MR | Zbl

[8] B. G. Vakulov, N. K. Karapetyants, L. D. Shankishvili, “Sfericheskie potentsialy kompleksnogo poryadka v obobschennykh prostranstvakh Gëldera s vesom”, Dokl. RAN, 382:3 (2002), 1–4 | MR

[9] B. G. Vakulov, N. K. Karapetians, L. D. Shankishvili, “Spherical hypersingular operators of imaginary order and their multipliers”, Fract. Calc. Appl. Anal., 4:1 (2001), 101–112 | MR | Zbl

[10] B. G. Vakulov, N. K. Karapetyants, L. D. Shankishvili, “Sfericheskie potentsialy kompleksnogo poryadka v obobschennykh gëlderovykh prostranstvakh”, Izv. NAN Armenii, 36:2 (2001), 54–78 | MR

[11] A. I. Ginzburg, N. K. Karapetyants, “Drobnoe integrodifferentsirovanie v gëlderovskikh klassakh peremennogo poryadka”, Dokl. RAN, 339:4 (1994), 439–441 | MR | Zbl

[12] B. G. Vakulov, “Ob ekvivalentnykh normirovkakh v prostranstvakh funktsii kompleksnoi gladkosti na sfere”, Tr. IM NAN Belarusi, 9, Minsk, 2001, 41–44

[13] N. K. Karapetians, A. I. Ginzburg, “Fractional integrodifferentiation in Hölder classes of arbitrary order”, Georgian Math. J., 2:2 (1995), 141–150 | DOI | MR | Zbl

[14] N. K. Karapetians, A. I. Ginzburg, “Fractional integrals and singular integrals in the Hölder classes of variable order”, Integral Transform. Spec. Funct., 2:2 (1994), 91–106 | DOI | MR | Zbl

[15] B. Ross, S. Samko, “Fractional integration operator of variable order in the Hölder spaces $H^{\lambda(x)}$”, Internat. J. Math. Math. Sci., 18:4 (1995), 777–788 | DOI | MR | Zbl

[16] S. G. Samko, Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984 | MR | Zbl

[17] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl

[18] K. Daodi, J. Levy Vehel, Y. Meyer, “Construction of continuous functions with prescribed local regularity”, Constructive Approximation, 14:3 (1998), 349–385 | DOI | MR | Zbl

[19] D. I. Mamedkhanov, A. A. Nersesyan, “O konstruktivnoi kharakteristike klassa $H_\alpha^{\lambda+\alpha}(x_0,[-\pi,\pi])$”, Issledovaniya po teorii lineinykh operatorov, Baku, 1987, 74–78

[20] N. B. Pleschinskii, “O postroenii funktsii, udovletvoryayuschikh usloviyu Gëldera s zadannym pokazatelem”, Izv. vuzov. Matem., 1984, no. 8, 74–77 | MR | Zbl

[21] Yu. Lyuk, Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980 | MR | Zbl

[22] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl