Vlasov--Wulbert connectedness of sets in Hilbert space
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 790-792.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2006_80_5_a14,
     author = {V. A. Koshcheev},
     title = {Vlasov--Wulbert connectedness of sets in {Hilbert} space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {790--792},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a14/}
}
TY  - JOUR
AU  - V. A. Koshcheev
TI  - Vlasov--Wulbert connectedness of sets in Hilbert space
JO  - Matematičeskie zametki
PY  - 2006
SP  - 790
EP  - 792
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a14/
LA  - ru
ID  - MZM_2006_80_5_a14
ER  - 
%0 Journal Article
%A V. A. Koshcheev
%T Vlasov--Wulbert connectedness of sets in Hilbert space
%J Matematičeskie zametki
%D 2006
%P 790-792
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a14/
%G ru
%F MZM_2006_80_5_a14
V. A. Koshcheev. Vlasov--Wulbert connectedness of sets in Hilbert space. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 790-792. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a14/

[1] L. P. Vlasov, UMN, 28:6 (1973), 3–66 | MR | Zbl

[2] V. S. Balaganskii, L. P. Vlasov, UMN, 51:6 (1996), 125–188 | MR | Zbl

[3] I. G. Tsarkov, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl

[4] D. E. Wulbert, Continuity of metric projections. Approximation theory in a normed linear lattice, Thesis, Univ. Texas Comp. Center. Austin, 1966