On special congruence subgroups of symplectic groups
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 770-772

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is proved that every special congruence subgroup $SSp(V,I)$ of the symplectic group $Sp(V(R))$, where $R$ is a ring of stable rank $1$ with invertible element $2$ and $\dim V(R)\ge 4$, is generated by the symplectic transvections belonging to this subgroup. This result is used to obtain the complete description of the normal subgroups of $Sp(V(R))$.
@article{MZM_2006_80_5_a11,
     author = {S. Tazhetdinov},
     title = {On special congruence subgroups of symplectic groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {770--772},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a11/}
}
TY  - JOUR
AU  - S. Tazhetdinov
TI  - On special congruence subgroups of symplectic groups
JO  - Matematičeskie zametki
PY  - 2006
SP  - 770
EP  - 772
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a11/
LA  - ru
ID  - MZM_2006_80_5_a11
ER  - 
%0 Journal Article
%A S. Tazhetdinov
%T On special congruence subgroups of symplectic groups
%J Matematičeskie zametki
%D 2006
%P 770-772
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a11/
%G ru
%F MZM_2006_80_5_a11
S. Tazhetdinov. On special congruence subgroups of symplectic groups. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 770-772. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a11/