Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_5_a10, author = {S. B. Tabaldyev}, title = {On strict homological dimensions of algebras of continuous functions}, journal = {Matemati\v{c}eskie zametki}, pages = {757--769}, publisher = {mathdoc}, volume = {80}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/} }
S. B. Tabaldyev. On strict homological dimensions of algebras of continuous functions. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 757-769. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/
[1] A. Ya. Khelemskii, “O gomologicheskoi razmernosti normirovannykh modulei nad banakhovymi algebrami”, Matem. sb., 81(123) (1970), 430–444 | Zbl
[2] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR | Zbl
[3] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR | Zbl
[4] Yu. V. Selivanov, Kogomologii banakhovykh i blizkikh k nim algebr, Diss. ... d.f.-m.n., MATI, M., 2002
[5] J. L. Taylor, “Homology and cohomology for topological algebras”, Adv. Math., 9 (1972), 137–182 | DOI | MR | Zbl
[6] A. Yu. Pirkovskii, “Injective topological modules, additivity formulas for homological dimensions, and related topics”, Topological Homology: Helemskii's Moscow Seminar, Nova Science, New York, 2000, 93–143 | MR | Zbl
[7] S. S. Akbarov, “Stereotype spaces, algebras, homologies: an outline”, Topological Homology: Helemskii's Moscow Seminar, Nova Science, New York, 2000, 1–27 | MR | Zbl
[8] A. Ya. Helemskii, “Some aspects of topological homology since 1995: A survey”, Banach Algebras and their Applications, Contemp. Math., 363, Amer. Math. Soc., Providence, RI, 2004, 145–179 | MR | Zbl
[9] E. Sh. Kurmakaeva, “Zavisimost strogoi gomologicheskoi razmernosti $C(\Omega)$ ot topologii $\Omega$”, Matem. zametki, 55:3 (1994), 76–83 | MR | Zbl
[10] E. Sh. Kurmakaeva, Gomologicheskie svoistva algebr nepreryvnykh funktsii, Diss. ... k.f.-m.n., MGU, M., 1991
[11] N. Th. Varopoulos, “Some remarks on $Q$-algebras”, Ann. Inst. Fourier (Grenoble), 22:4 (1972), 1–11 | MR | Zbl
[12] A. Ya. Khelemskii, “Nizshie znacheniya, prinimaemye globalnoi gomologicheskoi razmernostyu funktsionalnykh banakhovykh algebr”, Tr. seminara im. I. G. Petrovskogo, 3, 1978, 223–242 | Zbl
[13] S. Pott, “An account on the global dimension theorem of A. Ya. Helemskii”, Annales Universitatis Saraviensis, 9 (1999), 155–194 | MR | Zbl
[14] W. Moran, “The global dimension of $C(X)$”, J. London Math. Soc. (2), 17 (1978), 321–329 | DOI | MR | Zbl
[15] A. N. Krichevets, O gomologicheskoi razmernosti algebry $C(\Omega)$, Dep. VINITI, No 9012-V86, SO AN SSSR, Novosibirsk, 1986
[16] Yu. V. Selivanov, “Homological dimensions of tensor products of Banach algebras”, Banach Algebras'97, Walter de Gruyter, Berlin, 1998, 441–459 | MR | Zbl
[17] W. Sierpiński, Cardinal and Ordinal Numbers, Warszawa, 1965 | MR | Zbl
[18] R. S. Phillips, “On linear transformations”, Trans. Amer. Math. Soc., 48:3 (1948), 516–541 | DOI | MR
[19] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1955 | MR | Zbl
[20] Yu. V. Selivanov, “O znacheniyakh, prinimaemykh globalnoi razmernostyu v nekotorykh klassakh banakhovykh algebr”, Vestn. MGU. Ser. 1. Matem., mekh., 1975, no. 1, 37–42 | MR | Zbl
[21] S. Maklein, Gomologiya, Mir, M., 1966