On strict homological dimensions of algebras of continuous functions
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 757-769.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for each nonnegative integer $n$ and $n=\infty$, there exists a compact topological space $\Omega$ such that the strict global dimension and the strict bidimension of the Banach algebra $C(\Omega)$ of all continuous functions on $\Omega$ are equal to $n$. We also obtain several “additivity formulas” for the strict homological dimensions of strict Banach algebras.
@article{MZM_2006_80_5_a10,
     author = {S. B. Tabaldyev},
     title = {On strict homological dimensions of algebras of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {757--769},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/}
}
TY  - JOUR
AU  - S. B. Tabaldyev
TI  - On strict homological dimensions of algebras of continuous functions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 757
EP  - 769
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/
LA  - ru
ID  - MZM_2006_80_5_a10
ER  - 
%0 Journal Article
%A S. B. Tabaldyev
%T On strict homological dimensions of algebras of continuous functions
%J Matematičeskie zametki
%D 2006
%P 757-769
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/
%G ru
%F MZM_2006_80_5_a10
S. B. Tabaldyev. On strict homological dimensions of algebras of continuous functions. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 757-769. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/

[1] A. Ya. Khelemskii, “O gomologicheskoi razmernosti normirovannykh modulei nad banakhovymi algebrami”, Matem. sb., 81(123) (1970), 430–444 | Zbl

[2] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR | Zbl

[3] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR | Zbl

[4] Yu. V. Selivanov, Kogomologii banakhovykh i blizkikh k nim algebr, Diss. ... d.f.-m.n., MATI, M., 2002

[5] J. L. Taylor, “Homology and cohomology for topological algebras”, Adv. Math., 9 (1972), 137–182 | DOI | MR | Zbl

[6] A. Yu. Pirkovskii, “Injective topological modules, additivity formulas for homological dimensions, and related topics”, Topological Homology: Helemskii's Moscow Seminar, Nova Science, New York, 2000, 93–143 | MR | Zbl

[7] S. S. Akbarov, “Stereotype spaces, algebras, homologies: an outline”, Topological Homology: Helemskii's Moscow Seminar, Nova Science, New York, 2000, 1–27 | MR | Zbl

[8] A. Ya. Helemskii, “Some aspects of topological homology since 1995: A survey”, Banach Algebras and their Applications, Contemp. Math., 363, Amer. Math. Soc., Providence, RI, 2004, 145–179 | MR | Zbl

[9] E. Sh. Kurmakaeva, “Zavisimost strogoi gomologicheskoi razmernosti $C(\Omega)$ ot topologii $\Omega$”, Matem. zametki, 55:3 (1994), 76–83 | MR | Zbl

[10] E. Sh. Kurmakaeva, Gomologicheskie svoistva algebr nepreryvnykh funktsii, Diss. ... k.f.-m.n., MGU, M., 1991

[11] N. Th. Varopoulos, “Some remarks on $Q$-algebras”, Ann. Inst. Fourier (Grenoble), 22:4 (1972), 1–11 | MR | Zbl

[12] A. Ya. Khelemskii, “Nizshie znacheniya, prinimaemye globalnoi gomologicheskoi razmernostyu funktsionalnykh banakhovykh algebr”, Tr. seminara im. I. G. Petrovskogo, 3, 1978, 223–242 | Zbl

[13] S. Pott, “An account on the global dimension theorem of A. Ya. Helemskii”, Annales Universitatis Saraviensis, 9 (1999), 155–194 | MR | Zbl

[14] W. Moran, “The global dimension of $C(X)$”, J. London Math. Soc. (2), 17 (1978), 321–329 | DOI | MR | Zbl

[15] A. N. Krichevets, O gomologicheskoi razmernosti algebry $C(\Omega)$, Dep. VINITI, No 9012-V86, SO AN SSSR, Novosibirsk, 1986

[16] Yu. V. Selivanov, “Homological dimensions of tensor products of Banach algebras”, Banach Algebras'97, Walter de Gruyter, Berlin, 1998, 441–459 | MR | Zbl

[17] W. Sierpiński, Cardinal and Ordinal Numbers, Warszawa, 1965 | MR | Zbl

[18] R. S. Phillips, “On linear transformations”, Trans. Amer. Math. Soc., 48:3 (1948), 516–541 | DOI | MR

[19] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1955 | MR | Zbl

[20] Yu. V. Selivanov, “O znacheniyakh, prinimaemykh globalnoi razmernostyu v nekotorykh klassakh banakhovykh algebr”, Vestn. MGU. Ser. 1. Matem., mekh., 1975, no. 1, 37–42 | MR | Zbl

[21] S. Maklein, Gomologiya, Mir, M., 1966