On strict homological dimensions of algebras of continuous functions
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 757-769

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for each nonnegative integer $n$ and $n=\infty$, there exists a compact topological space $\Omega$ such that the strict global dimension and the strict bidimension of the Banach algebra $C(\Omega)$ of all continuous functions on $\Omega$ are equal to $n$. We also obtain several “additivity formulas” for the strict homological dimensions of strict Banach algebras.
@article{MZM_2006_80_5_a10,
     author = {S. B. Tabaldyev},
     title = {On strict homological dimensions of algebras of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {757--769},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/}
}
TY  - JOUR
AU  - S. B. Tabaldyev
TI  - On strict homological dimensions of algebras of continuous functions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 757
EP  - 769
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/
LA  - ru
ID  - MZM_2006_80_5_a10
ER  - 
%0 Journal Article
%A S. B. Tabaldyev
%T On strict homological dimensions of algebras of continuous functions
%J Matematičeskie zametki
%D 2006
%P 757-769
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/
%G ru
%F MZM_2006_80_5_a10
S. B. Tabaldyev. On strict homological dimensions of algebras of continuous functions. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 757-769. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a10/