On the existence of an element with given deviations from an expanding system of subspaces
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 657-667.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem as to whether a Banach space contains an element with given deviations from an expanding system of strictly nested subspaces (which are not necessarily finite-dimensional) is solved under additional restrictions on the deviations or subspaces.
@article{MZM_2006_80_5_a1,
     author = {P. A. Borodin},
     title = {On the existence of an element with given deviations from an expanding system of subspaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {657--667},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - On the existence of an element with given deviations from an expanding system of subspaces
JO  - Matematičeskie zametki
PY  - 2006
SP  - 657
EP  - 667
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a1/
LA  - ru
ID  - MZM_2006_80_5_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T On the existence of an element with given deviations from an expanding system of subspaces
%J Matematičeskie zametki
%D 2006
%P 657-667
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a1/
%G ru
%F MZM_2006_80_5_a1
P. A. Borodin. On the existence of an element with given deviations from an expanding system of subspaces. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 657-667. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a1/

[1] S. N. Bernshtein, “Ob obratnoi zadache teorii nailuchshego priblizheniya nepreryvnykh funktsii”, Sobranie sochinenii, 2, Izd-vo AN SSSR, 1954, 292–294 | MR | Zbl

[2] A. F. Timan, Teoriya priblizhenii funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960 | MR | Zbl

[3] V. N. Nikolskii, “O nekotorykh svoistvakh refleksivnykh prostranstv”, Uch. zap. Kalin. gos. ped. in-ta, 29 (1963), 121–125 | MR

[4] R. C. James, “Reflexivity and the supremum of linear functionals”, Ann. of Math., 66:1 (1957), 159–169 | DOI | MR | Zbl

[5] I. S. Tyuremskikh, “$(B)$-svoistvo gilbertovykh prostranstv”, Uch. zap. Kalin. gos. ped. in-ta, 39 (1964), 53–64

[6] H. S. Shapiro, “Some negative theorems on approximation theory”, Michigan Math. J., 11:3 (1964), 211–217 | DOI | MR | Zbl

[7] I. S. Tyuremskikh, “Ob odnoi zadache S. N. Bernshteina”, Uch. zap. Kalin. gos. ped. in-ta, 52 (1967), 123–129

[8] G. Lewicki, “Bernstein's “lethargy” theorem in metrizable topological linear spaces”, Monatsh. Math., 113:3 (1992), 213–226 | DOI | MR | Zbl

[9] A. I. Vasilev, “Obratnaya zadacha teorii nailuchshego priblizheniya v $F$-prostranstvakh”, Dokl. RAN, 365:5 (1999), 583–585 | MR | Zbl

[10] A. A. Pekarskii, “Suschestvovanie funktsii s zadannymi nailuchshimi ravnomernymi ratsionalnymi priblizheniyami”, Izv. AN Belarusi. Ser. fiz.-matem. nauk, 1994, no. 1, 23–26 | MR | Zbl

[11] A. P. Starovoitov, “K probleme opisaniya posledovatelnostei nailuchshikh trigonometricheskikh ratsionalnykh priblizhenii”, Matem. sb., 191:6 (2000), 145–154 | MR | Zbl

[12] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, URSS, M., 2004 | MR | Zbl