@article{MZM_2006_80_4_a8,
author = {A. P. Laurincikas and D. Siauciunas},
title = {Remarks on the universality of the periodic zeta function},
journal = {Matemati\v{c}eskie zametki},
pages = {561--568},
year = {2006},
volume = {80},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a8/}
}
A. P. Laurincikas; D. Siauciunas. Remarks on the universality of the periodic zeta function. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a8/
[1] J. Steuding, Value-distribution of $L$-functions and allied zeta-functions—with an emphasis on aspects of universality, Habilitationsschrift, Frankfurt, J. W. Goethe-Universität, 2003
[2] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl
[3] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR | Zbl
[4] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996 | MR
[5] P. Bilingsli, Skhodimost veroyatnostnykh mer, M., Nauka | MR
[6] A. Laurinchikas, D. Shyauchyunas, “O periodicheskoi dzeta-funktsii. II”, Lit. matem. sb., 41:4 (2001), 461–476 | MR | Zbl
[7] A. Laurinčikas, R. Šleževičienė, “The universality of zeta-functions with multiplicative coefficients”, Integral Transforms Special Functions, 13 (2002), 243–257 | DOI | MR | Zbl