Remarks on the universality of the periodic zeta function
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 561-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the universality of a Dirichlet series with periodic coefficients. This property is proved in the case of multiplicative coefficients, and in the general case we establish universality in a certain set of analytic functions related to a probability distribution.
@article{MZM_2006_80_4_a8,
     author = {A. P. Laurincikas and D. Siauciunas},
     title = {Remarks on the universality of the periodic zeta function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {561--568},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a8/}
}
TY  - JOUR
AU  - A. P. Laurincikas
AU  - D. Siauciunas
TI  - Remarks on the universality of the periodic zeta function
JO  - Matematičeskie zametki
PY  - 2006
SP  - 561
EP  - 568
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a8/
LA  - ru
ID  - MZM_2006_80_4_a8
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%A D. Siauciunas
%T Remarks on the universality of the periodic zeta function
%J Matematičeskie zametki
%D 2006
%P 561-568
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a8/
%G ru
%F MZM_2006_80_4_a8
A. P. Laurincikas; D. Siauciunas. Remarks on the universality of the periodic zeta function. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a8/

[1] J. Steuding, Value-distribution of $L$-functions and allied zeta-functions—with an emphasis on aspects of universality, Habilitationsschrift, Frankfurt, J. W. Goethe-Universität, 2003

[2] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[3] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR | Zbl

[4] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996 | MR

[5] P. Bilingsli, Skhodimost veroyatnostnykh mer, M., Nauka | MR

[6] A. Laurinchikas, D. Shyauchyunas, “O periodicheskoi dzeta-funktsii. II”, Lit. matem. sb., 41:4 (2001), 461–476 | MR | Zbl

[7] A. Laurinčikas, R. Šleževičienė, “The universality of zeta-functions with multiplicative coefficients”, Integral Transforms Special Functions, 13 (2002), 243–257 | DOI | MR | Zbl