The coradical of a Jordan (alternative) coalgebra and the quasiregular radical of its dual algebra
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 509-515
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the orthogonal complement to the coradical of a Jordan (alternative) coalgebra coincides with the quasiregular radical of the dual algebra.
@article{MZM_2006_80_4_a3,
author = {V. N. Zhelyabin},
title = {The coradical of a {Jordan} (alternative) coalgebra and the quasiregular radical of its dual algebra},
journal = {Matemati\v{c}eskie zametki},
pages = {509--515},
year = {2006},
volume = {80},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a3/}
}
V. N. Zhelyabin. The coradical of a Jordan (alternative) coalgebra and the quasiregular radical of its dual algebra. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 509-515. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a3/
[1] H. G. Heyneman, D. E. Radford, “Reflexivity and coalgebras of finite type”, J. Algebra, 28 (1974), 215–246 | DOI | MR | Zbl
[2] J. A. Anquela, T. Cortes, F. Montaner, “Nonassociative coalgebras”, Comm. Algebra, 22:12 (1994), 4693–4716 | DOI | MR | Zbl
[3] M. E. Sweedler, Hopf Algebras, Math. Lecture Note Series, W. A. Benjamin Inc., New York, 1969 | MR | Zbl
[4] V. N. Zhelyabin, “Strukturizuemye koalgebry”, Algebra i logika, 35:5 (1996), 529–542 | MR | Zbl
[5] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl