Tensor roots of isomorphisms and weak limits of transformations
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 596-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that two transformations $S$ and $T$ are isomorphic if their Cartesian squares are isomorphic, under the assumption that the sequence of powers of $T$ converges weakly to a polynomial.
@article{MZM_2006_80_4_a12,
     author = {V. V. Ryzhikov and A. E. Troitskaya},
     title = {Tensor roots of isomorphisms and weak limits of transformations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {596--600},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a12/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
AU  - A. E. Troitskaya
TI  - Tensor roots of isomorphisms and weak limits of transformations
JO  - Matematičeskie zametki
PY  - 2006
SP  - 596
EP  - 600
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a12/
LA  - ru
ID  - MZM_2006_80_4_a12
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%A A. E. Troitskaya
%T Tensor roots of isomorphisms and weak limits of transformations
%J Matematičeskie zametki
%D 2006
%P 596-600
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a12/
%G ru
%F MZM_2006_80_4_a12
V. V. Ryzhikov; A. E. Troitskaya. Tensor roots of isomorphisms and weak limits of transformations. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 596-600. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a12/

[1] D. V. Anosov, O spektralnykh kratnostyakh v ergodicheskoi teorii, Sovremennye problemy matematiki, no. 3, MIAN, M., 2003 | DOI | MR | Zbl

[2] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 | MR

[3] G. R. Goodson, “A survey of recent results in the spectral theory of ergodic dynamical systems”, J. Dynamical Control Systems, 5:2 (1999), 173–226 | DOI | MR | Zbl

[4] A. A. Prikhod'ko, V. V. Ryzhikov, “Disjointness of convolutions for Chacon's automorphism”, Colloq. Math., 84/85 (2000), 67–74 | MR | Zbl

[5] A. M. Stepin, A. M. Eremenko, “Needinstvennost vklyucheniya v potok i obshirnost tsentralizatora dlya tipichnogo sokhranyayuschego meru preobrazovaniya”, Matem. sb., 195:12 (2004), 95–108 | MR | Zbl

[6] V. V. Ryzhikov, “Tipichnost izomorfizma preobrazovanii pri izomorfizme ikh dekartovykh stepenei”, Matem. zametki, 59:4 (1996), 630–632 | MR | Zbl

[7] A. M. Vershik, “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie protsessy”, Zapiski nauchnykh seminarov LOMI, 72, 1977, 26–61 | MR | Zbl