Unique solvability of pseudohyperbolic equations with singular right-hand sides
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 582-595
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the solvability of the Cauchy problem for pseudohyperbolic equations
(partial differential equations of third order). For the case in which the right-hand side is a generalized function (distribution) of finite order, we establish a theorem on the unique solvability
for a sufficiently general pseudohyperbolic operator. The method of proof is based on a specially constructed “scale” of a priori inequalities for the direct and adjoint operators.
@article{MZM_2006_80_4_a11,
author = {D. A. Nomirovskii},
title = {Unique solvability of pseudohyperbolic equations with singular right-hand sides},
journal = {Matemati\v{c}eskie zametki},
pages = {582--595},
publisher = {mathdoc},
volume = {80},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a11/}
}
D. A. Nomirovskii. Unique solvability of pseudohyperbolic equations with singular right-hand sides. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 582-595. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a11/