A local two-radii theorem for quasianalytic classes of functions
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 490-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact characteristic of maximal smoothness of nontrivial functions with zero integrals over balls whose radii belong to a given two-element set is obtained.
@article{MZM_2006_80_4_a1,
     author = {V. V. Volchkov},
     title = {A local two-radii theorem for quasianalytic classes of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {490--500},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - A local two-radii theorem for quasianalytic classes of functions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 490
EP  - 500
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a1/
LA  - ru
ID  - MZM_2006_80_4_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T A local two-radii theorem for quasianalytic classes of functions
%J Matematičeskie zametki
%D 2006
%P 490-500
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a1/
%G ru
%F MZM_2006_80_4_a1
V. V. Volchkov. A local two-radii theorem for quasianalytic classes of functions. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 490-500. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a1/

[1] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl

[2] I. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl

[3] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl

[4] C. A. Berenstein, R. Gay, A. Yger, “Invertion of the local Pompeiu transform”, J. Analyse Math., 54 (1990), 259–287 | DOI | MR | Zbl

[5] V. V. Volchkov, “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl

[6] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spaces”, Comm. Math. Helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[7] M. El Harchaoui, “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques réel et complexe: cas de deux boules”, J. Anal. Math., 67 (1995), 1–37 | DOI | MR | Zbl

[8] J. M. Cohen, M. A. Picardello, “The 2-circle and 2-disk problems on trees”, Israel J. Math., 64 (1988), 73–86 | DOI | MR | Zbl

[9] V. V. Volchkov, “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sb., 188:9 (1997), 13–30 | MR | Zbl

[10] V. V. Volchkov, “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl

[11] V. V. Volchkov, “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | MR | Zbl

[12] V. V. Volchkov, “O mnozhestvakh in'ektivnosti preobrazovaniya Radona na sferakh”, Izv. RAN. Ser. matem., 63:3 (1999), 63–76 | MR | Zbl

[13] V. V. Volchkov, “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl

[14] V. V. Volchkov, “Teoremy o dvukh radiusakh na prostranstvakh postoyannoi krivizny”, Dokl. RAN, 347:3 (1996), 300–302 | MR | Zbl

[15] V. V. Volchkov, “Okonchatelnyi variant teoremy o srednem v teorii garmonicheskikh funktsii”, Matem. zametki, 59:3 (1996), 351–358 | MR | Zbl

[16] V. V. Volchkov, “Novye teoremy o srednem dlya polianaliticheskikh funktsii”, Matem. zametki, 56:3 (1994), 20–28 | MR | Zbl

[17] Vit. V. Volchkov, “Teoremy o srednem dlya odnogo klassa polinomov”, Sib. matem. zh., 35:4 (1994), 737–745 | MR | Zbl

[18] V. V. Volchkov, “Teoremy o sharovykh srednikh na kompleksnykh giperbolicheskikh prostranstvakh”, Dopovidi NAN Ukraini, 2000, no. 4, 7–10 | MR | Zbl

[19] G. V. Badalyan, Kvazistepennoi ryad i kvazianaliticheskie klassy funktsii, Nauka, M., 1990 | MR | Zbl

[20] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR

[21] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[22] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[23] B. G. Korenev, Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl

[24] S. Khelgason, Gruppy i geometricheskii analiz, Integralnaya geometriya, invariantnye differentsialnye operatory i sfericheskie funktsii, Mir, M., 1987 | MR