Similarity invariants for matrices over a commutative Artinian chain ring
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 403-412
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $R$ is a commutative Artinian chain ring, $A$ is an $m\times m$ matrix over $R$, and $S$ is a discrete valuation ring such that $R$ is a homomorphic image of $S$. We consider $m$ ideals in the polynomial ring over $S$ that are similarity invariants for matrices over $R$, i.e., these ideals coincide for similar matrices. It is shown that the new invariants are stronger than the Fitting invariants, and that new invariants solve the similarity problem for $2\times 2$ matrices over $R$.
Keywords:
commutative Artinian chain ring, discrete valuation ring, polynomial ring, ideal, similarity invariants, Fitting invariants.
@article{MZM_2006_80_3_a9,
author = {V. L. Kurakin},
title = {Similarity invariants for matrices over a commutative {Artinian} chain ring},
journal = {Matemati\v{c}eskie zametki},
pages = {403--412},
publisher = {mathdoc},
volume = {80},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a9/}
}
V. L. Kurakin. Similarity invariants for matrices over a commutative Artinian chain ring. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a9/