On rationality and 2-reflexiveness of wreath products of finite groups
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 395-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is said to be rational if each its irreducible character acquires only rational values, and it is said to be 2-reflexive if each its element can be represented as a product of at most two involutions. We find necessary and sufficient conditions for the wreath of two finite groups be rational and 2-reflexive. Namely, we show that the wreath $H\wr K$ of two finite groups $H$ and $K$ is a rational (respectively, 2-reflexive) group iff $H$ is a rational (respectively, 2-reflexive) group and $K$ is an elementary Abelian 2-group. As a corollary, we obtain a description of all classical linear groups over finite fields of odd characteristic with rational and 2-reflexive Sylow 2-subgroups.
Keywords: wreath product, Sylow group, 2-reflexive group, irreducible character, classical linear group, dihedral group.
Mots-clés : rational group
@article{MZM_2006_80_3_a8,
     author = {S. G. Kolesnikov},
     title = {On rationality and 2-reflexiveness of wreath products of finite groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {395--402},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a8/}
}
TY  - JOUR
AU  - S. G. Kolesnikov
TI  - On rationality and 2-reflexiveness of wreath products of finite groups
JO  - Matematičeskie zametki
PY  - 2006
SP  - 395
EP  - 402
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a8/
LA  - ru
ID  - MZM_2006_80_3_a8
ER  - 
%0 Journal Article
%A S. G. Kolesnikov
%T On rationality and 2-reflexiveness of wreath products of finite groups
%J Matematičeskie zametki
%D 2006
%P 395-402
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a8/
%G ru
%F MZM_2006_80_3_a8
S. G. Kolesnikov. On rationality and 2-reflexiveness of wreath products of finite groups. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 395-402. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a8/

[1] “Kourovskaya tetrad”, Nereshennye voprosy teorii grupp, 15-e izd., IM SO RAN, Novosibirsk, 2002 | MR | Zbl

[2] Zh.-P. Serr, Gruppy Galua nad $\mathbb Q$, Trudy seminara N. Burbaki za 1988 g., Matematika. Novoe v zarubezhnoi nauke, 46, Mir, M., 1990 | MR | Zbl

[3] A. I. Kostrikin, I. A. Chubarov, “Predstavlenie konechnykh grupp”, Itogi nauki i tekhniki. Algebra. geometriya i topologiya. Fundament. napravleniya, 23, VINITI, M., 1985, 119–196 | MR

[4] S. G. Kolesnikov, “O ratsionalnosti znachenii kompleksnykh kharakterov silovskikh 2-podgrupp simmetricheskikh grupp $S_{2^n}$”, Algebra and Model Theory, 4, NGTU, Novosibirsk, 2003, 44–46 | MR

[5] M. Kholl, Teoriya grupp, IL, M., 1962 | MR | Zbl

[6] G. Baumslag, “Wreath products and $p$-groups”, Proc. Cambridge Philos. Soc., 55 (1959), 224–231 | DOI | MR | Zbl

[7] V. N. Remeslennikov, “Finitnaya approksimiruemost grupp otnositelno sopryazhennosti”, Sib. matem. zh., 12:5 (1971), 1085–1099 | MR | Zbl

[8] F. Bakhman, Postroenie geometrii na osnove ponyatiya simmetrii, Nauka, M., 1969 | MR | Zbl

[9] R. Carter, P. Fong, “The Sylow 2-subgroups of the finite classical groups”, J. Algebra, 1:2 (1964), 139–151 | DOI | MR | Zbl