Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_3_a8, author = {S. G. Kolesnikov}, title = {On rationality and 2-reflexiveness of wreath products of finite groups}, journal = {Matemati\v{c}eskie zametki}, pages = {395--402}, publisher = {mathdoc}, volume = {80}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a8/} }
S. G. Kolesnikov. On rationality and 2-reflexiveness of wreath products of finite groups. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 395-402. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a8/
[1] “Kourovskaya tetrad”, Nereshennye voprosy teorii grupp, 15-e izd., IM SO RAN, Novosibirsk, 2002 | MR | Zbl
[2] Zh.-P. Serr, Gruppy Galua nad $\mathbb Q$, Trudy seminara N. Burbaki za 1988 g., Matematika. Novoe v zarubezhnoi nauke, 46, Mir, M., 1990 | MR | Zbl
[3] A. I. Kostrikin, I. A. Chubarov, “Predstavlenie konechnykh grupp”, Itogi nauki i tekhniki. Algebra. geometriya i topologiya. Fundament. napravleniya, 23, VINITI, M., 1985, 119–196 | MR
[4] S. G. Kolesnikov, “O ratsionalnosti znachenii kompleksnykh kharakterov silovskikh 2-podgrupp simmetricheskikh grupp $S_{2^n}$”, Algebra and Model Theory, 4, NGTU, Novosibirsk, 2003, 44–46 | MR
[5] M. Kholl, Teoriya grupp, IL, M., 1962 | MR | Zbl
[6] G. Baumslag, “Wreath products and $p$-groups”, Proc. Cambridge Philos. Soc., 55 (1959), 224–231 | DOI | MR | Zbl
[7] V. N. Remeslennikov, “Finitnaya approksimiruemost grupp otnositelno sopryazhennosti”, Sib. matem. zh., 12:5 (1971), 1085–1099 | MR | Zbl
[8] F. Bakhman, Postroenie geometrii na osnove ponyatiya simmetrii, Nauka, M., 1969 | MR | Zbl
[9] R. Carter, P. Fong, “The Sylow 2-subgroups of the finite classical groups”, J. Algebra, 1:2 (1964), 139–151 | DOI | MR | Zbl