Excursions of a Gaussian process with variable variance above a barrier increasing to infinity
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 386-394
Voir la notice de l'article provenant de la source Math-Net.Ru
For a family of real-valued Gaussian processes $\xi_u(t)$, $t\in[0,T]$, we obtain an exact asymptotics of the probability of crossing a level $u$ as $u\to\infty$ under certain conditions on the variance and correlation. This result is applied to the investigation of excursions of a stationary zero-mean process above a barrier increasing to infinity.
Keywords:
Gaussian process, excursions of Gaussian processes, level-crossing probability, fractional Brownian motion, covariance function.
@article{MZM_2006_80_3_a7,
author = {S. G. Kobel'kov},
title = {Excursions of a {Gaussian} process with variable variance above a barrier increasing to infinity},
journal = {Matemati\v{c}eskie zametki},
pages = {386--394},
publisher = {mathdoc},
volume = {80},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a7/}
}
TY - JOUR AU - S. G. Kobel'kov TI - Excursions of a Gaussian process with variable variance above a barrier increasing to infinity JO - Matematičeskie zametki PY - 2006 SP - 386 EP - 394 VL - 80 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a7/ LA - ru ID - MZM_2006_80_3_a7 ER -
S. G. Kobel'kov. Excursions of a Gaussian process with variable variance above a barrier increasing to infinity. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 386-394. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a7/