Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_3_a7, author = {S. G. Kobel'kov}, title = {Excursions of a {Gaussian} process with variable variance above a barrier increasing to infinity}, journal = {Matemati\v{c}eskie zametki}, pages = {386--394}, publisher = {mathdoc}, volume = {80}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a7/} }
TY - JOUR AU - S. G. Kobel'kov TI - Excursions of a Gaussian process with variable variance above a barrier increasing to infinity JO - Matematičeskie zametki PY - 2006 SP - 386 EP - 394 VL - 80 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a7/ LA - ru ID - MZM_2006_80_3_a7 ER -
S. G. Kobel'kov. Excursions of a Gaussian process with variable variance above a barrier increasing to infinity. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 386-394. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a7/
[1] V. I. Piterbarg, Asimptoticheskie metody v teorii gaussovskikh sluchainykh protsessov i polei, Izd-vo MGU, M., 1988 | Zbl
[2] J. Pickands, III, “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl
[3] V. I. Piterbarg, V. Prisyazhnyuk, “Asimptoticheskoe povedenie veroyatnosti bolshogo vybrosa dlya nestatsionarnogo gaussovskogo protsessa”, Teoriya veroyatn. i matem. statistika, 18 (1978), 121–134 | MR | Zbl
[4] M. R. Leadbetter, “On crossings of arbitrary curves by certain Gaussian processes”, Proc. Amer. Math. Soc., 16 (1965), 60–68 | DOI | MR | Zbl
[5] S. Berman, “Vybrosy statsionarnogo gaussovskogo protsessa za vysokii dvizhuschiisya barer”, Sluchainye protsessy. Vyborochnye funktsii i peresecheniya, Mir, M., 1978, 133–164 | MR | Zbl
[6] V. Piterbarg, O. Seleznjev, Linear interpolation of random processes and extremes of a sequence of Gaussian non-stationary processes, Proc. Tech. Rep., 446, North Carolina Univ., Chapel Hill, Center Stoch., 1994
[7] J. Hüsler, V. Piterbarg, O. Seleznev, “On convergence of the uniform norms for Gaussian processes and linear approximation problems”, Ann. Appl. Probab., 13:4 (2003), 1615–1653 | DOI | MR | Zbl
[8] E. Hashorva, J. Husler, “Extremes of Gaussian processes with maximal variance near the boundary points”, Methodol. Comput. Appl. Probab., 2:3 (2000), 255–269 | DOI | MR | Zbl