Heat Distribution in an Infinite Rod
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 379-385
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct an asymptotic expansion of the solution of the Cauchy problem for the one-dimensional heat equation for the case in which the initial function at infinity has power asymptotics.
Keywords:
heat equation, Cauchy problem for the heat equation, heat distribution in an infinite rod, uniform asymptotics, Hermite function.
@article{MZM_2006_80_3_a6,
author = {S. V. Zakharov},
title = {Heat {Distribution} in an {Infinite} {Rod}},
journal = {Matemati\v{c}eskie zametki},
pages = {379--385},
year = {2006},
volume = {80},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a6/}
}
S. V. Zakharov. Heat Distribution in an Infinite Rod. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 379-385. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a6/
[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl
[2] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl
[3] A. R. Danilin, “Asimptotika ogranichennykh upravlenii dlya singulyarnoi ellipticheskoi zadachi v oblasti s maloi polostyu”, Matem. sb., 189:11 (1998), 27–60 | MR | Zbl
[4] S. V. Zakharov, A. M. Ilin, “Ot slabogo razryva k gradientnoi katastrofe”, Matem. sb., 192:10 (2001), 3–18 | MR | Zbl
[5] E. Ya. Riekstynsh, Asimptoticheskie razlozheniya integralov, t. 1, Zinatne, Riga, 1974 | MR | Zbl
[6] M. V. Fedoryuk, Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR | Zbl