Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_3_a4, author = {S. V. Galtsev and A. I. Shafarevich}, title = {Spectrum and {Pseudospectrum} of non-self-adjoint {Schr\"odinger} {Operators} with {Periodic} {Coefficients}}, journal = {Matemati\v{c}eskie zametki}, pages = {356--366}, publisher = {mathdoc}, volume = {80}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a4/} }
TY - JOUR AU - S. V. Galtsev AU - A. I. Shafarevich TI - Spectrum and Pseudospectrum of non-self-adjoint Schr\"odinger Operators with Periodic Coefficients JO - Matematičeskie zametki PY - 2006 SP - 356 EP - 366 VL - 80 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a4/ LA - ru ID - MZM_2006_80_3_a4 ER -
%0 Journal Article %A S. V. Galtsev %A A. I. Shafarevich %T Spectrum and Pseudospectrum of non-self-adjoint Schr\"odinger Operators with Periodic Coefficients %J Matematičeskie zametki %D 2006 %P 356-366 %V 80 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a4/ %G ru %F MZM_2006_80_3_a4
S. V. Galtsev; A. I. Shafarevich. Spectrum and Pseudospectrum of non-self-adjoint Schr\"odinger Operators with Periodic Coefficients. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 356-366. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a4/
[1] S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. M. Olivé, “Quasimodes of the diffusion operator $-\varepsilon\Delta+v(x)\cdot\nabla$, corresponding to asymptotically stable limit cycles of the field $v(x)$”, Third Symposium on Probability Theory and Stochastic Processes (Hermosillo, 1994), Aportaciones Mat. Notas Investigación, 11, Soc. Mat. Mexicana, México, 1994, 81–89 | MR | Zbl
[2] S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. Martines Olive, “Asimptoticheski ustoichivye invariantnye tory vektornogo polya $V(x)$ i kvazimody operatora diffuzii”, Matem. zametki, 58:2 (1995), 301–306 | MR | Zbl
[3] S. A. Stepin, “Nesamosopryazhennye singulyarnye vozmuscheniya i spektralnye svoistva zadachi Orra–Zommerfelda”, Matem. sb., 188 (1997), 129–146 | MR | Zbl
[4] A. A. Shkalikov, “O predelnom povedenii spektra pri bolshikh znacheniyakh parametra odnoi modelnoi zadachi”, Matem. zametki, 62:6 (1997), 950–953 | MR | Zbl
[5] S. A. Stepin, A. A. Arzhanov, “O lokalizatsii spektra v odnoi zadache singulyarnoi teorii vozmuschenii”, UMN, 57:3 (2002), 161–162 | MR | Zbl
[6] S. N. Tumanov, A. A. Shkalikov, “O predelnom povedenii spektra modelnoi zadachi dlya uravneniya Orra–Zommerfelda s profilem Puazeilya”, Izv. RAN. Ser. matem., 66:4 (2002), 177–204 | MR | Zbl
[7] S. V. Galtsev, A. I. Shafarevich, “Asimptotika diskretnogo spektra nesamosopryazhennogo periodichnogo operatora”, Trudy XXVII Konferentsii molodykh uchenykh, Izd-vo mekh.-mat. fak-ta MGU, M., 2005, 18–22
[8] A. A. Schkalikov, Spectral portraits and the resolvent growth of a model problem associated with the Orr–Sommerfeld equation, arXiv: math.FA/0306342v1