Spectrum and Pseudospectrum of non-self-adjoint Schr\"odinger Operators with Periodic Coefficients
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 356-366.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the pseudospectrum of the non-self-adjoint operator $$ \mathfrak D=-h^2\frac{d^2}{dx^2}+iV(x), $$ where $V(x)$ is a periodic entire analytic function, real on the real axis, with a real period $T$. In this operator, $h$ is treated as a small parameter. We show that the pseudospectrum of this operator is the closure of its numerical image, i.e., a half-strip in $\mathbb C$. In this case, the pseudoeigenfunctions, i.e., the functions $\varphi(h,x)$ satisfying the condition $$ \|\mathfrak D\varphi-\lambda\varphi\|=O(h^N), \qquad \|\varphi\|=1, \quad N\in\mathbb N, $$ can be constructed explicitly. Thus, it turns out that the pseudospectrum of the operator under study is much wider than its spectrum.
Keywords: spectrum, pseudospectrum, Schrödinger operator, periodicity condition, periodic entire analytic function, non-self-adjoint operator, Riemann surface.
@article{MZM_2006_80_3_a4,
     author = {S. V. Galtsev and A. I. Shafarevich},
     title = {Spectrum and {Pseudospectrum} of non-self-adjoint {Schr\"odinger} {Operators} with {Periodic} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {356--366},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a4/}
}
TY  - JOUR
AU  - S. V. Galtsev
AU  - A. I. Shafarevich
TI  - Spectrum and Pseudospectrum of non-self-adjoint Schr\"odinger Operators with Periodic Coefficients
JO  - Matematičeskie zametki
PY  - 2006
SP  - 356
EP  - 366
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a4/
LA  - ru
ID  - MZM_2006_80_3_a4
ER  - 
%0 Journal Article
%A S. V. Galtsev
%A A. I. Shafarevich
%T Spectrum and Pseudospectrum of non-self-adjoint Schr\"odinger Operators with Periodic Coefficients
%J Matematičeskie zametki
%D 2006
%P 356-366
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a4/
%G ru
%F MZM_2006_80_3_a4
S. V. Galtsev; A. I. Shafarevich. Spectrum and Pseudospectrum of non-self-adjoint Schr\"odinger Operators with Periodic Coefficients. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 356-366. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a4/

[1] S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. M. Olivé, “Quasimodes of the diffusion operator $-\varepsilon\Delta+v(x)\cdot\nabla$, corresponding to asymptotically stable limit cycles of the field $v(x)$”, Third Symposium on Probability Theory and Stochastic Processes (Hermosillo, 1994), Aportaciones Mat. Notas Investigación, 11, Soc. Mat. Mexicana, México, 1994, 81–89 | MR | Zbl

[2] S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. Martines Olive, “Asimptoticheski ustoichivye invariantnye tory vektornogo polya $V(x)$ i kvazimody operatora diffuzii”, Matem. zametki, 58:2 (1995), 301–306 | MR | Zbl

[3] S. A. Stepin, “Nesamosopryazhennye singulyarnye vozmuscheniya i spektralnye svoistva zadachi Orra–Zommerfelda”, Matem. sb., 188 (1997), 129–146 | MR | Zbl

[4] A. A. Shkalikov, “O predelnom povedenii spektra pri bolshikh znacheniyakh parametra odnoi modelnoi zadachi”, Matem. zametki, 62:6 (1997), 950–953 | MR | Zbl

[5] S. A. Stepin, A. A. Arzhanov, “O lokalizatsii spektra v odnoi zadache singulyarnoi teorii vozmuschenii”, UMN, 57:3 (2002), 161–162 | MR | Zbl

[6] S. N. Tumanov, A. A. Shkalikov, “O predelnom povedenii spektra modelnoi zadachi dlya uravneniya Orra–Zommerfelda s profilem Puazeilya”, Izv. RAN. Ser. matem., 66:4 (2002), 177–204 | MR | Zbl

[7] S. V. Galtsev, A. I. Shafarevich, “Asimptotika diskretnogo spektra nesamosopryazhennogo periodichnogo operatora”, Trudy XXVII Konferentsii molodykh uchenykh, Izd-vo mekh.-mat. fak-ta MGU, M., 2005, 18–22

[8] A. A. Schkalikov, Spectral portraits and the resolvent growth of a model problem associated with the Orr–Sommerfeld equation, arXiv: math.FA/0306342v1