Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_3_a15, author = {A. I. Shtern}, title = {Automatic continuity of pseudocharacters on semisimple {Lie} groups}, journal = {Matemati\v{c}eskie zametki}, pages = {456--464}, publisher = {mathdoc}, volume = {80}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a15/} }
A. I. Shtern. Automatic continuity of pseudocharacters on semisimple Lie groups. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 456-464. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a15/
[1] S. Banach, Théorie des opérations linéaires, Monograf. Mat., 1, PWN, Warszawa, 1932 | MR | Zbl
[2] J. W. Baker, B. M. Lashkarizadeh, “Representations and positive definite functions on topological semigroups”, Glasgow Math. J., 38:1 (1996), 99–111 | DOI | MR | Zbl
[3] R. Exel, M. Laca, “Continuous Fell bundles associated to measurable twisted actions”, Proc. Amer. Math. Soc., 125:3 (1997), 795–799 | DOI | MR | Zbl
[4] S. A. Gaal, Linear Analysis and Representation Theory, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl
[5] C. C. Moore, “Group extensions and cohomology for locally compact groups. III”, Trans. Amer. Math. Soc., 221:1 (1976), 1–33 | DOI | MR | Zbl
[6] R. T. Moore, Measurable, Continuous and Smooth Vectors for Semi-Groups and Group Representations, Mem. Amer. Math. Soc., 78, American Mathematical Society, Providence, RI, 1968 | MR | Zbl
[7] K.-H. Neeb, “On a theorem of S. Banach”, J. Lie Theory, 7:2 (1997), 293–300 | MR | Zbl
[8] K.-H. Neeb, D. Pickrell, “Supplements to the papers entitled: “On a theorem of S. Banach” and "The separable representations of $\mathrm{U}(H)$"”, J. Lie Theory, 10:1 (2000), 107–109 | MR | Zbl
[9] V. Pestov, Review of [7], Math. Review 98i:22003, 1998 | MR
[10] Z. Sasvari, Positive Definite and Definitizable Functions, Mathematical Topics, 2, Akademie Verlag, Berlin, 1994 | MR | Zbl
[11] A. I. Shtern, “Continuity of Banach representations in terms of point variations”, Russ. J. Math. Phys., 9:2 (2002), 250–252 | MR | Zbl
[12] A. I. Shtern, “Kriterii slaboi i silnoi nepreryvnosti predstavlenii topologicheskikh grupp v banakhovykh prostranstvakh”, Matem. sb., 193:9 (2002), 139–156 | MR | Zbl
[13] A. I. Shtern, “Continuity criteria for finite-dimensional representations of compact connected groups”, Adv. Stud. Contemp. Math. (Kyungshang), 6:2 (2003), 141–156 | MR | Zbl
[14] A. I. Shtern, “Continuity conditions for finite-dimensional representations of some compact totally disconnected groups”, Adv. Stud. Contemp. Math. (Kyungshang), 8:1 (2004), 13–22 | MR | Zbl
[15] A. I. Shtern, “Kriterii nepreryvnosti konechnomernykh predstavlenii svyaznykh lokalno kompaktnykh grupp”, Matem. sb., 195:9 (2004), 145–159 | MR | Zbl
[16] A. I. Shtern, “Kriterii nepreryvnosti konechnomernykh predstavlenii lokalno kompaktnykh grupp”, Matem. zametki, 75:6 (2004), 951–953 | MR | Zbl
[17] E. Khyuitt, K. A. Ross, Abstraktnyi garmonicheskii analiz, t. 1, Nauka, M., 1975 | MR | Zbl
[18] A. I. Shtern, “Kvazipredstavleniya i psevdopredstavleniya”, Funktsion. analiz i prilozh., 25:2 (1991), 70–73 | MR | Zbl
[19] A. I. Shtern, “Quasi-symmetry. I”, Russ. J. Math. Phys., 2:3 (1994), 353–382 | MR | Zbl
[20] A. I. Shtern, “Ustoichivost predstavlenii i psevdokharaktery”, Lomonosovskie chteniya, MGU, M., 1983
[21] C. Bavard, “Longueur stable des commutateurs”, Enseign. Math. (2), 37:2 (1991), 109–150 | MR | Zbl
[22] M. Gromov, “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional Analysis on the Eve of the 21st Century, Vol. II (New Brunswick, NJ, 1993), Progr. Math., 32, Birkhäuser, Boston, MA, 1996, 1–213 | MR | Zbl
[23] J. F. Manning, “Geometry of pseudocharacters”, Geom. Topol., 9 (2005), 1147–1185 | DOI | MR | Zbl
[24] A. I. Shtern, Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups, Sfb 288 Preprint No 289, 1997
[25] A. I. Shtern, “Strukturnye svoistva i ogranichennye veschestvennye nepreryvnye 2-kogomologii lokalno kompaktnykh grupp”, Funktsion. analiz i prilozh., 35:4 (2001), 67–80 | MR | Zbl
[26] A. I. Shtern, “Bounded continuous real 2-cocycles on simply connected simple Lie groups and their applications”, Russ. J. Math. Phys., 8:1 (2001), 122–133 | MR | Zbl
[27] A. I. Shtern, “Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups”, Ann. Global Anal. Geom., 20 (2001), 199–221 | DOI | MR | Zbl
[28] A. I. Shtern, “A criterion for the second real continuous bounded cohomology of a locally compact group to be finite-dimensional”, Acta Appl. Math., 68:1–3 (2001), 105–121 | DOI | MR | Zbl
[29] J.-M. Gambaudo, É. Ghys, “Commutators and diffeomorphisms of surfaces”, Ergodic Theory Dynam. Systems, 24:5 (2004), 1591–1617 | DOI | MR | Zbl
[30] P. Biran, M. Entov, L. Polterovich, “Calabi quasimorphisms for the symplectic ball”, Commun. Contemp. Math., 6:5 (2004), 793–802 | DOI | MR | Zbl
[31] D. Kotschick, S. Morita, “Signatures of foliated surface bundles and the symplectomorphism groups of surfaces”, Topology, 44:1 (2005), 131–149 | DOI | MR | Zbl
[32] D. McDuff, “A survey of the topological properties of symplectomorphism groups”, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004, 173–193 | MR | Zbl
[33] A. I. Shtern, “Deformatsiya neprivodimykh unitarnykh predstavlenii diskretnoi serii ermitovo simmetricheskikh prostykh grupp Li v klasse chistykh psevdopredstavlenii”, Matem. zametki, 73:3 (2003), 478–480 | MR | Zbl
[34] A. I. Shtern, “Proektivnye predstavleniya i chistye psevdopredstavleniya ermitovo simmetricheskikh prostykh grupp Li”, Matem. zametki, 78:1 (2005), 140–146 | Zbl
[35] D. Kotschick, “What is$\dots$a quasi-morphism?”, Notices Amer. Math. Soc., 51:2 (2004), 208–209 | MR | Zbl
[36] A. I. Shtern, “Triviality and continuity of pseudocharacters and pseudorepresentations”, Russ. J. Math. Phys., 5:1 (1997), 135–138 | MR | Zbl
[37] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | MR | Zbl
[38] A. L. T. Paterson, Amenability, Math. Surveys Monographs, 29, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[39] K. H. Hofmann, S. A. Morris, The Structure of Compact Groups, de Gruyter Studies in Math., 25, de Gruyter, Berlin, 1998 | MR | Zbl
[40] M. A. Naimark, A. I. Štern [Shtern], Theory of Group Representations, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl
[41] A. I. Shtern, “Automatic continuity of pseudocharacters on Hermitian symmetric semisimple Lie groups and some applications”, Adv. Stud. Contemp. Math. (Kyungshang), 12:1 (2006), 1–8 | MR
[42] D. Kazhdan, “On $\epsilon$-representations”, Israel J. Math., 43:4 (1982), 315–323 | DOI | MR | Zbl