Projective and generating modules over the ring of pseudorational numbers
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 437-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

The projective, flat, and generating modules over the ring of pseudorational numbers are described. For the projective modules, a complete independent system of invariants is constructed.
Keywords: module over the ring of pseudorational numbers, pseudorational numbers, projective module, generating module, flat module.
@article{MZM_2006_80_3_a13,
     author = {A. V. Tsarev},
     title = {Projective and generating modules over the ring of pseudorational numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {437--448},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a13/}
}
TY  - JOUR
AU  - A. V. Tsarev
TI  - Projective and generating modules over the ring of pseudorational numbers
JO  - Matematičeskie zametki
PY  - 2006
SP  - 437
EP  - 448
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a13/
LA  - ru
ID  - MZM_2006_80_3_a13
ER  - 
%0 Journal Article
%A A. V. Tsarev
%T Projective and generating modules over the ring of pseudorational numbers
%J Matematičeskie zametki
%D 2006
%P 437-448
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a13/
%G ru
%F MZM_2006_80_3_a13
A. V. Tsarev. Projective and generating modules over the ring of pseudorational numbers. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 437-448. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a13/

[1] A. A. Fomin, “Some mixed abelian groups as modules over the ring of pseudo-rational numbers”, Abelian Groups and Modules, Trends in Mathematics, Birkhäuser-Verlag, Basel, 1999, 87–100 | MR | Zbl

[2] P. A. Krylov, E. G. Pakhomova, E. I. Podberezina, “Ob odnom klasse smeshannykh abelevykh grupp”, Vestn. Tomskogo un-ta, 269 (2000), 47–51

[3] A. A. Fomin, “Quotient divisible mixed groups”, Contemp. Math., 273 (2001), 117–128 | MR | Zbl

[4] P. A. Krylov, “Smeshannye abelevy gruppy kak moduli nad svoimi koltsami endomorfizmov”, Fundament. i prikl. matem., 6:3 (2000), 793–812 | MR | Zbl

[5] S. V. Cheglyakova, “In'ektivnye moduli nad koltsom psevdoratsionalnykh chisel”, Fundament. i prikl. matem., 7:2 (2001), 627–629 | MR | Zbl

[6] A. V. Tsarev, “Psevdoratsionalnyi rang abelevoi gruppy”, Sib. matem. zh., 46:1 (2005), 217–229 | MR | Zbl

[7] L. Fuks, Beskonechnye abelevy gruppy, t. 1, 2, Mir, M., 1974, 1977 | MR | MR | Zbl

[8] K. Feis, Algebra: koltsa, moduli i kategorii, t. 1, Mir, M., 1977 | MR | Zbl

[9] A. V. Tsarev, “Konechno porozhdennye $R$-moduli”, Nauch. trudy mat. fak-ta MPGU, Prometei, M., 2000, 285–289 | MR

[10] S. Glaz, W. Wickless, “Regular and principal projective endomorphism rings of mixed abelian groups”, Comm. Algebra, 22 (1994), 1161–1176 | DOI | MR | Zbl