Perturbation of the trigonometric system in~$L_1(0,\pi)$
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 429-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a special perturbation of the function system obtained from the Fejér kernel. It is shown how this relates to the stability of bases and complete systems as well to the stability of the trigonometric system. An approximation algorithm in systems resulting from a perturbation of the original system is given.
Keywords: trigonometric system, perturbation of the trigonometric system, the space $L_1(0,\pi)$, complete and minimal system, stability of the trigonometric system.
Mots-clés : Fejér kernel
@article{MZM_2006_80_3_a12,
     author = {V. I. Filippov},
     title = {Perturbation of the trigonometric system in~$L_1(0,\pi)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {429--436},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a12/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - Perturbation of the trigonometric system in~$L_1(0,\pi)$
JO  - Matematičeskie zametki
PY  - 2006
SP  - 429
EP  - 436
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a12/
LA  - ru
ID  - MZM_2006_80_3_a12
ER  - 
%0 Journal Article
%A V. I. Filippov
%T Perturbation of the trigonometric system in~$L_1(0,\pi)$
%J Matematičeskie zametki
%D 2006
%P 429-436
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a12/
%G ru
%F MZM_2006_80_3_a12
V. I. Filippov. Perturbation of the trigonometric system in~$L_1(0,\pi)$. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 429-436. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a12/

[1] S. V. Bochkarev, “Postroenie interpolyatsionnogo diadicheskogo bazisa v prostranstve nepreryvnykh funktsii na osnove yader Feiera”, Tr. MIAN, 172, 1985, 29–59 | MR | Zbl

[2] A. M. Olevskii, “Ob ustoichivosti operatora ortogonalizatsii Shmidta”, Izv. AN SSSR. Ser. matem., 34 (1970), 803–826 | MR | Zbl

[3] M. G. Krein, D. P. Milman, M. A. Rutman, “Ob odnom svoistve bazisa v prostranstve Banakha”, Zapiski matem. obschestva. Kharkov (4), 16 (1940), 106–110 | MR | Zbl

[4] V. D. Milman, “Geometricheskaya teoriya prostranstv Banakha”, UMN, 25:3(153) (1970), 113–174 | MR | Zbl

[5] Yu. B. Tumarkin, “Ustoichivost bazisov v $B$-prostranstvakh i drugikh klassakh LVP”, Teoriya funktsii, funktsion. analiz i ego prilozh., 14, 1971, 26–35 | MR | Zbl

[6] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962 | MR | Zbl

[7] V. I. Filippov, “On the completeness and other properties of some function systems in $L^p$, $0

\infty$”, J. Approx. Theory, 94 (1998), 42–53 | DOI | MR | Zbl

[8] V. I. Filippov, “Linear continuous functionals and representation of functions by series in the spaces $E_\phi$”, Anal. Math., 27:4 (2001), 239–260 | DOI | MR | Zbl

[9] V. I. Filippov, “O silnykh vozmuscheniyakh sistemy Khaara v prostranstvakh $L_1(0,1)$”, Matem. zametki, 66:4 (1999), 596–602 | MR