Index of Lattices and Hilbert Polynomials
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 323-327
Voir la notice de l'article provenant de la source Math-Net.Ru
An upper bound for the index of a sublattice, which arises in relation to various versions of zero lemmas in the theory of linear forms in logarithms of algebraic numbers, in terms of the Hilbert polynomial is found. Simultaneously, a lower bound for the values of this polynomial is obtained.
Keywords:
algebraic number, logarithmic height, lattice, index of a sublattice, rational subspace.
Mots-clés : Hilbert polynomial
Mots-clés : Hilbert polynomial
@article{MZM_2006_80_3_a0,
author = {Yu. M. Alexencev},
title = {Index of {Lattices} and {Hilbert} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {323--327},
publisher = {mathdoc},
volume = {80},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a0/}
}
Yu. M. Alexencev. Index of Lattices and Hilbert Polynomials. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 323-327. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a0/