Index of Lattices and Hilbert Polynomials
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 323-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the index of a sublattice, which arises in relation to various versions of zero lemmas in the theory of linear forms in logarithms of algebraic numbers, in terms of the Hilbert polynomial is found. Simultaneously, a lower bound for the values of this polynomial is obtained.
Keywords: algebraic number, logarithmic height, lattice, index of a sublattice, rational subspace.
Mots-clés : Hilbert polynomial
@article{MZM_2006_80_3_a0,
     author = {Yu. M. Alexencev},
     title = {Index of {Lattices} and {Hilbert} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--327},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a0/}
}
TY  - JOUR
AU  - Yu. M. Alexencev
TI  - Index of Lattices and Hilbert Polynomials
JO  - Matematičeskie zametki
PY  - 2006
SP  - 323
EP  - 327
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a0/
LA  - ru
ID  - MZM_2006_80_3_a0
ER  - 
%0 Journal Article
%A Yu. M. Alexencev
%T Index of Lattices and Hilbert Polynomials
%J Matematičeskie zametki
%D 2006
%P 323-327
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a0/
%G ru
%F MZM_2006_80_3_a0
Yu. M. Alexencev. Index of Lattices and Hilbert Polynomials. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 323-327. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a0/

[1] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups, Springer-Verlag, Berlin, 2000 | MR | Zbl

[2] T. Loher, D. Masser, “Uniformly counting of bounded height”, Acta Arith., 111:3 (2004), 277–297 | DOI | MR | Zbl

[3] E. M. Matveev, “O posledovatelnykh minimumakh rasshirennoi logarifmicheskoi vysoty algebraicheskikh chisel”, Matem. sb., 190:3 (1999), 89–108 | MR | Zbl

[4] E. M. Matveev, “Yavnaya nizhnyaya otsenka odnorodnoi ratsionalnoi lineinoi formy ot logarifmov algebraicheskikh chisel”, Izv. RAN. Ser. matem., 62:4 (1998), 81–136 | MR | Zbl

[5] P. Philippon, M. Waldschmidt, “Lower bounds for linear forms in logarithms”, New Advances in Transcendence Theory (Durham, 1986), ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, 280–312 | MR | Zbl

[6] Yu. M. Aleksentsev, Mnogochlen Gilberta i lineinye formy ot logarifmov algebraicheskikh chisel, Dep. VINITI 15.04.2005, No 515-B2005, 2005

[7] M. Meyer, A. Pajor, “Sections of the unit ball of $l_p^n$”, J. Funct. Anal., 80:1 (1988), 109–123 | DOI | MR | Zbl

[8] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1959 | MR | Zbl