Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_3_a0, author = {Yu. M. Alexencev}, title = {Index of {Lattices} and {Hilbert} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--327}, publisher = {mathdoc}, volume = {80}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a0/} }
Yu. M. Alexencev. Index of Lattices and Hilbert Polynomials. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 323-327. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a0/
[1] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups, Springer-Verlag, Berlin, 2000 | MR | Zbl
[2] T. Loher, D. Masser, “Uniformly counting of bounded height”, Acta Arith., 111:3 (2004), 277–297 | DOI | MR | Zbl
[3] E. M. Matveev, “O posledovatelnykh minimumakh rasshirennoi logarifmicheskoi vysoty algebraicheskikh chisel”, Matem. sb., 190:3 (1999), 89–108 | MR | Zbl
[4] E. M. Matveev, “Yavnaya nizhnyaya otsenka odnorodnoi ratsionalnoi lineinoi formy ot logarifmov algebraicheskikh chisel”, Izv. RAN. Ser. matem., 62:4 (1998), 81–136 | MR | Zbl
[5] P. Philippon, M. Waldschmidt, “Lower bounds for linear forms in logarithms”, New Advances in Transcendence Theory (Durham, 1986), ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, 280–312 | MR | Zbl
[6] Yu. M. Aleksentsev, Mnogochlen Gilberta i lineinye formy ot logarifmov algebraicheskikh chisel, Dep. VINITI 15.04.2005, No 515-B2005, 2005
[7] M. Meyer, A. Pajor, “Sections of the unit ball of $l_p^n$”, J. Funct. Anal., 80:1 (1988), 109–123 | DOI | MR | Zbl
[8] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1959 | MR | Zbl