The Lack-of-Preference Law and the Corresponding Distributions in Frequency Probability Theory
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 220-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain two new distributions in frequency probability theory and demonstrate them, in particular, in the example of frequency dictionaries. One of these distributions gives a logarithmic correction to the Zipf–Mandelbrot law, and the other describes the “tails” of the distribution.
Keywords: frequency probability, frequency dictionary, Zipf–Mandelbrot law, tail of distribution, Shannon entropy, Wiener process, Kolmogorov complexity.
@article{MZM_2006_80_2_a7,
     author = {V. P. Maslov},
     title = {The {Lack-of-Preference} {Law} and the {Corresponding} {Distributions} in {Frequency} {Probability} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {220--230},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a7/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - The Lack-of-Preference Law and the Corresponding Distributions in Frequency Probability Theory
JO  - Matematičeskie zametki
PY  - 2006
SP  - 220
EP  - 230
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a7/
LA  - ru
ID  - MZM_2006_80_2_a7
ER  - 
%0 Journal Article
%A V. P. Maslov
%T The Lack-of-Preference Law and the Corresponding Distributions in Frequency Probability Theory
%J Matematičeskie zametki
%D 2006
%P 220-230
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a7/
%G ru
%F MZM_2006_80_2_a7
V. P. Maslov. The Lack-of-Preference Law and the Corresponding Distributions in Frequency Probability Theory. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 220-230. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a7/

[1] Matematicheskii entsiklopedicheskii slovar, M., 1988

[2] V. P. Maslov, “Ob odnoi obschei teoreme teorii mnozhestv, privodyaschei k raspredeleniyu Gibbsa, Boze–Einshteina, Pareto i zakonu Tsipfa–Mandelbrota dlya fondovogo rynka”, Matem. zametki, 78:6 (2005), 870–877 | MR | Zbl

[3] V. P. Maslov, “Nelineinoe srednee v ekonomike”, Matem. zametki, 78:3 (2005), 377–395 | MR | Zbl

[4] V. P. Maslov, “Utochnenie zakona Tsipfa dlya chastotnykh slovarei”, Dokl. RAN, 405:5 (2005), 591–594 | MR | Zbl

[5] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2005 | Zbl

[6] E. A. Asarin, A. V. Pokrovskii, “Primenenie kolmogorovskoi slozhnosti k analizu dinamiki upravlyaemykh sistem”, Avtomatika i telemekhanika, 1986, no. 1, 25–33 | MR | Zbl

[7] E. Mendelson, Vvedenie v matematicheskuyu logiku, M., 1976

[8] A. A. Karatsuba, “Slozhnost vychislenii”, Tr. MIAN, 211, Nauka, M., 1995, 186–202 | MR

[9] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1964 | Zbl

[10] B. Mandelbrot, Fraktalnaya geometriya prirody, Institut kompyuternykh issledovanii, M., 2002

[11] British National Corpus, ftp.itri.bton.ac.uk/pub/bnc