Contactly Geodesic Transformations
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 209-219

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of contactly geodesic transformation of the metric of an almost-contact metric structure as a contact analog of holomorphically geodesic transformations of the metric of an almost-Hermitian structure. A series of invariants of such transformations is obtained. We prove that such transformations preserve the normality property of an almost-contact metric structure. We prove that cosymplectic and Sasakian manifolds, as well as Kenmotsu manifolds, do not admit nontrivial contactly geodesic transformations of the metric, which is a contact analog of the well-known result for Kählerian manifolds due to Westlake and Yano.
Keywords: Riemannian manifold, pseudo-Riemannian manifold, geodesic transformation, cosymplectic manifold, Sasakian manifold, Kenmotsu manifold, Riemann–Christoffel tensor, almost-contact structure.
@article{MZM_2006_80_2_a6,
     author = {V. F. Kirichenko and N. N. Dondukova},
     title = {Contactly {Geodesic} {Transformations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {209--219},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a6/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - N. N. Dondukova
TI  - Contactly Geodesic Transformations
JO  - Matematičeskie zametki
PY  - 2006
SP  - 209
EP  - 219
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a6/
LA  - ru
ID  - MZM_2006_80_2_a6
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A N. N. Dondukova
%T Contactly Geodesic Transformations
%J Matematičeskie zametki
%D 2006
%P 209-219
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a6/
%G ru
%F MZM_2006_80_2_a6
V. F. Kirichenko; N. N. Dondukova. Contactly Geodesic Transformations. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a6/