Contactly Geodesic Transformations
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 209-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of contactly geodesic transformation of the metric of an almost-contact metric structure as a contact analog of holomorphically geodesic transformations of the metric of an almost-Hermitian structure. A series of invariants of such transformations is obtained. We prove that such transformations preserve the normality property of an almost-contact metric structure. We prove that cosymplectic and Sasakian manifolds, as well as Kenmotsu manifolds, do not admit nontrivial contactly geodesic transformations of the metric, which is a contact analog of the well-known result for Kählerian manifolds due to Westlake and Yano.
Keywords: Riemannian manifold, pseudo-Riemannian manifold, geodesic transformation, cosymplectic manifold, Sasakian manifold, Kenmotsu manifold, Riemann–Christoffel tensor, almost-contact structure.
@article{MZM_2006_80_2_a6,
     author = {V. F. Kirichenko and N. N. Dondukova},
     title = {Contactly {Geodesic} {Transformations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {209--219},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a6/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - N. N. Dondukova
TI  - Contactly Geodesic Transformations
JO  - Matematičeskie zametki
PY  - 2006
SP  - 209
EP  - 219
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a6/
LA  - ru
ID  - MZM_2006_80_2_a6
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A N. N. Dondukova
%T Contactly Geodesic Transformations
%J Matematičeskie zametki
%D 2006
%P 209-219
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a6/
%G ru
%F MZM_2006_80_2_a6
V. F. Kirichenko; N. N. Dondukova. Contactly Geodesic Transformations. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a6/

[1] T. Levi-Civita, “Sulle transformationi delle equazioni dinamiche”, Ann. Math. Milano, Ser. 2, 24 (1894), 255–300

[2] T. Y. Thomas, “On projective and equiprojective geometries of paths”, PWC Nat. Acad. Sci. USA, 11 (1925), 198–203

[3] H. Weyl, “Zur Infinitesimalgeometrie Einordnung der projectiven und der conformen Auffassung”, Göttingen Nachr., 1921, 99–112 | Zbl

[4] N. S. Sinyukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl

[5] W. J. Westlake, “Hermitian spaces in geodesic correspondence”, Proc. Amer. Math. Soc., 5:2 (1954), 301–303 | DOI | MR | Zbl

[6] K. Yano, “Sur la correspondence projective entre deux espaces pseudohermitens”, C.R. Acad. Sci. Paris, 239 (1956), 1346–1348 | MR

[7] V. F. Kirichenko, “Aksioma $\Phi$-golomorfnykh ploskostei v kontaktnoi geometrii”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 711–739 | MR

[8] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[9] V. F. Kirichenko, “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, II”, Geom. Dedicata, 52 (1994), 53–85 | DOI | MR | Zbl

[10] V. F. Kirichenko, “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Problemy geometrii, 18, VINITI AN SSSR, 1986, 25–71 | MR

[11] D. E. Blair, “Contact manifolds in Riemannian geometry”, Lecture Notes Math., 509, 1976, 1–145 | MR

[12] K. Kenmotsu, “A class of almost contact Riemannian manifolds”, Tôhoku Math. J., 24 (1972), 93–103 | DOI | MR | Zbl