On a Class of Inequalities for Orthonormal Systems
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 204-208
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, a novel approach to the proof of inequalities of Lieb–Thirring type based on the standard apparatus of the theory of orthogonal series is proposed.
Keywords:
inequality of Lieb–Thirring type, orthonormal system, orthogonal series, classical Littlewood–Paley theorem, Cauchy's inequality.
@article{MZM_2006_80_2_a5,
author = {B. S. Kashin},
title = {On a {Class} of {Inequalities} for {Orthonormal} {Systems}},
journal = {Matemati\v{c}eskie zametki},
pages = {204--208},
year = {2006},
volume = {80},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a5/}
}
B. S. Kashin. On a Class of Inequalities for Orthonormal Systems. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 204-208. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a5/
[1] E. Lieb, W. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities”, Studies in Mathematical Physics, Essays in honor of Valentine Bargmann, Princeton Univ. Press, Princeton, 1976, 269–303
[2] A. A. Ilin, “Integralnye neravenstva Liba–Tirringa i ikh prilozheniya k attraktoram uravnenii Nave–Stoksa”, Matem. sb., 196:1 (2005), 33–66 | MR | Zbl
[3] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997 | MR
[4] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, AFTs, M., 1999 | MR
[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Fizmatlit, M., 1977 | MR