On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 193-203
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the convergence of the linear means of the Fourier–Jacobi series of functions $f(x)$ from the weight space $L_{\alpha,\beta}[-1,1]$ for $x=1$ for the case in which this point is a Lebesgue point for $f$. We establish sufficient summability conditions depending on the behavior of the function on the closed interval $[-1,0]$ and on the properties of the matrix involved in the summation method.
Keywords:
Jacobi series, linear means of Jacobi series, Cesàro summability, Cesàro means
Mots-clés : Lebesgue point, antipolar condition, Abel transformation, Vallée-Poussin kernel.
Mots-clés : Lebesgue point, antipolar condition, Abel transformation, Vallée-Poussin kernel.
@article{MZM_2006_80_2_a4,
author = {S. G. Kal'nei},
title = {On the {Convergence} of the {Linear} {Means} of {Jacobi} {Series} at {Lebesgue} {Points} in the {Case} of {Half-Integer~}$\alpha$},
journal = {Matemati\v{c}eskie zametki},
pages = {193--203},
publisher = {mathdoc},
volume = {80},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/}
}
TY - JOUR AU - S. G. Kal'nei TI - On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$ JO - Matematičeskie zametki PY - 2006 SP - 193 EP - 203 VL - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/ LA - ru ID - MZM_2006_80_2_a4 ER -
S. G. Kal'nei. On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 193-203. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/