On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 193-203

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the convergence of the linear means of the Fourier–Jacobi series of functions $f(x)$ from the weight space $L_{\alpha,\beta}[-1,1]$ for $x=1$ for the case in which this point is a Lebesgue point for $f$. We establish sufficient summability conditions depending on the behavior of the function on the closed interval $[-1,0]$ and on the properties of the matrix involved in the summation method.
Keywords: Jacobi series, linear means of Jacobi series, Cesàro summability, Cesàro means
Mots-clés : Lebesgue point, antipolar condition, Abel transformation, Vallée-Poussin kernel.
@article{MZM_2006_80_2_a4,
     author = {S. G. Kal'nei},
     title = {On the {Convergence} of the {Linear} {Means} of {Jacobi} {Series} at {Lebesgue} {Points} in the {Case} of {Half-Integer~}$\alpha$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/}
}
TY  - JOUR
AU  - S. G. Kal'nei
TI  - On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$
JO  - Matematičeskie zametki
PY  - 2006
SP  - 193
EP  - 203
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/
LA  - ru
ID  - MZM_2006_80_2_a4
ER  - 
%0 Journal Article
%A S. G. Kal'nei
%T On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$
%J Matematičeskie zametki
%D 2006
%P 193-203
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/
%G ru
%F MZM_2006_80_2_a4
S. G. Kal'nei. On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 193-203. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/