On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 193-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the convergence of the linear means of the Fourier–Jacobi series of functions $f(x)$ from the weight space $L_{\alpha,\beta}[-1,1]$ for $x=1$ for the case in which this point is a Lebesgue point for $f$. We establish sufficient summability conditions depending on the behavior of the function on the closed interval $[-1,0]$ and on the properties of the matrix involved in the summation method.
Keywords: Jacobi series, linear means of Jacobi series, Cesàro summability, Cesàro means
Mots-clés : Lebesgue point, antipolar condition, Abel transformation, Vallée-Poussin kernel.
@article{MZM_2006_80_2_a4,
     author = {S. G. Kal'nei},
     title = {On the {Convergence} of the {Linear} {Means} of {Jacobi} {Series} at {Lebesgue} {Points} in the {Case} of {Half-Integer~}$\alpha$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/}
}
TY  - JOUR
AU  - S. G. Kal'nei
TI  - On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$
JO  - Matematičeskie zametki
PY  - 2006
SP  - 193
EP  - 203
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/
LA  - ru
ID  - MZM_2006_80_2_a4
ER  - 
%0 Journal Article
%A S. G. Kal'nei
%T On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$
%J Matematičeskie zametki
%D 2006
%P 193-203
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/
%G ru
%F MZM_2006_80_2_a4
S. G. Kal'nei. On the Convergence of the Linear Means of Jacobi Series at Lebesgue Points in the Case of Half-Integer~$\alpha$. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 193-203. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a4/

[1] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[2] S. B. Topuriya, Ryady Fure–Laplasa na sfere, Izd-vo Tbilisskogo un-ta, Tbilisi, 1987

[3] S. G. Kalnei, “Summiruemost ryadov Yakobi treugolnymi matritsami”, Matem. zametki, 34:1 (1983), 91–103 | MR | Zbl

[4] E. Kogbetliantz, “Über die $(C,\delta)$ Summierbarkeit der Laplaceschen Reihe fur $1/2\delta1$”, Math. Z., 14 (1922), 99–109 | DOI | MR | Zbl

[5] S. G. Kal'nei, “On the summability of Jacobi series at Lebesgue points”, Analysis Mathematica, 29 (2003), 181–194 | DOI | MR | Zbl

[6] S. G. Kalnei, “O skhodimosti lineinykh srednikh ryadov Yakobi v tochkakh Lebega”, Priblizhenie funktsii. Teoreticheskie i prikladnye aspekty, Sbornik statei, posvyaschennykh pamyati professora A. V. Efimova, MIET, M., 2003, 124–139

[7] S. G. Kalnei, “O lineinykh metodakh summirovaniya ryadov Yakobi dlya polutselykh $\alpha$”, Analysis Mathematica, 22 (1996), 35–50 | DOI | MR | Zbl

[8] S. G. Kalnei, “Ob otsenke snizu funktsii Lebega lineinykh srednikh ryadov Fure–Yakobi”, Tr. MIAN, 170, 1984, 113–118 | MR | Zbl

[9] S. G. Kalnei, “Ob analoge teoremy S. M. Nikolskogo dlya ryadov Yakobi”, Ukr. matem. zh., 43:4 (1991), 503–513 | MR

[10] A. Bonami, J.-L. Clerc, “Sommes de Cesaro et multiplicateurs des développements en harmoniques spheriques”, Trans. Amer. Math. Soc., 183 (1973), 223–263 | DOI | MR | Zbl

[11] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974