Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_2_a13, author = {O. D. Frolkina}, title = {Relative {Preimage} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {282--295}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a13/} }
O. D. Frolkina. Relative Preimage Problem. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 282-295. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a13/
[1] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, Illinois, 1971 | MR | Zbl
[2] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics, 14, Amer. Math. Soc., Providence, RI, 1983 | MR
[3] T. H. Kiang, The Theory of Fixed Point Classes, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[4] J. Nielsen, “Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, I”, Acta Math., 50 (1927), 189–358 | DOI | MR | Zbl
[5] S. A. Bogatyi, D. L. Gonsalves, Kh. Tsishang, “Teoriya sovpadeniya: problema minimizatsii”, Tr. MIAN, 225, 1999, 52–86 | MR | Zbl
[6] C. K. McCord, “A Nielsen theory for intersection numbers”, Fund. Math., 152:2 (1997), 117–150 | MR | Zbl
[7] R. Dobreńko, Z. Kucharski, “On the generalization of the Nielsen number”, Fund. Math., 134:1 (1990), 1–14 | MR | Zbl
[8] H. Hopf, “Zur Topologie der Abbildungen von Mannigfaltigkeiten. II. Klasseninvarianten von Abbildungen”, Math. Ann., 102:4 (1929), 562–623 | MR | Zbl
[9] R. Brooks, Coincidences, Roots and Fixed Points, Doctoral Dissertation, Univ. of California, Los Angeles, 1967
[10] H. Schirmer, “A relative Nielsen number”, Pacific J. Math., 122:2 (1986), 459–473 | MR | Zbl
[11] H. Schirmer, “On the location of fixed points on pairs of spaces”, Topology Appl., 30:3 (1988), 253–266 | DOI | MR | Zbl
[12] H. Schirmer, “A survey of relative Nielsen fixed point theory”, Nielsen theory and dynamical systems, Contemporary Mathematics, 152, ed. C. McCord, Amer. Math. Soc., Providence, RI, 1993, 291–309 | MR | Zbl
[13] C. G. Jang, S. Lee, “A relative Nielsen number in coincidence theory”, J. Korean Math. Soc., 32:2 (1995), 171–181 | MR | Zbl
[14] J. Jezierski, “The relative coincidence Nielsen number”, Fund. Math., 149:1 (1996), 1–18 | MR | Zbl
[15] J. Guo, P. R. Heath, “Coincidence theory on the complement”, Topology Appl., 95:3 (1999), 229–250 | DOI | MR | Zbl
[16] K.-Y. Yang, “A relative root Nielsen number”, Comm. Korean Math. Soc., 11:1 (1996), 245–252 | MR | Zbl
[17] K.-Y. Yang, “The minimum theorem for the relative root Nielsen number”, Comm. Korean Math. Soc., 12:3 (1997), 701–707 | MR | Zbl
[18] R. F. Brown, H. Schirmer, “Nielsen theory of roots of maps of pairs”, Topology Appl., 92:3 (1999), 247–274 | DOI | MR | Zbl
[19] H. Schirmer, “Nielsen numbers for maps of triads”, Topology Appl., 52:2 (1993), 181–202 | DOI | MR | Zbl
[20] J. Jezierski, “The Nielsen coincidence theory on topological manifolds”, Fund. Math., 143:2 (1993), 167–178 | MR | Zbl
[21] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl
[22] C. K. McCord, “The three faces of Nielsen: Coincidences, intersections and preimages”, Topology Appl., 103:2 (2000), 155–177 | DOI | MR | Zbl
[23] B. Jiang, “Fixed points and braids”, Invent. Math., 75:1 (1984), 69–74 | DOI | MR | Zbl
[24] B. Jiang, “Fixed points and braids, II”, Math. Ann., 272:2 (1985), 249–256 | DOI | MR | Zbl
[25] S. A. Bogatyi, D. L. Gonsalves, E. A. Kudryavtseva, Kh. Tsishang, “Minimalnoe chislo proobrazov pri otobrazheniyakh mezhdu poverkhnostyami”, Matem. zametki, 75:1 (2004), 13–19 | MR | Zbl
[26] U. Koschorke, Nielsen coincidence theory in arbitrary codimensions, Preprint 306/2003, Universität Siegen | MR
[27] U. Koschorke, Geometric and homotopy theoretic methods in Nielsen coincidence theory, Preprint 308/2004, Universität Siegen | MR
[28] H. Schirmer, “Bemerkungen zur Homotopietheorie der Koinzidenzen mehrerer Abbildungen”, Arch. Math., 11 (1960), 56–64 | DOI | MR | Zbl
[29] O. D. Frolkina, “O zadache sovpadeniya konechnogo chisla otobrazhenii”, Tr. XXVI konf. molodykh uchenykh mekhaniko-matematicheskogo fakulteta MGU im. M. V. Lomonosova, t. II, Izd-vo mekh.-mat. f-ta MGU, M., 2004, 234–238
[30] J. Guo, Relative and Equivariant Coincidence Theory, Ph. D. Thesis, memorial University of Newfoundland, 1996
[31] J. Vick, Homology theory, Graduate Text Math., 145, Springer-Verlag, Berlin–Heidelberg–New York, 1994 | MR | Zbl