Relative Preimage Problem
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 282-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

We pose the problem of minimization for the relative preimage problem and prove a minimization theorem. The relative common preimage problem for a finite system of maps, whose particular cases are the relative coincidence and common root problems for finitely many maps, is reduced to the relative preimage problem. As corollaries, results concerning the relative coincidence problems for two maps, problems of fixed points and roots are obtained; these results, with certain distinctions, can be found in known papers by other authors.
Keywords: smooth manifold, map of pairs, minimization problem, Nielsen numbers, fixed point, common roots.
Mots-clés : preimage points
@article{MZM_2006_80_2_a13,
     author = {O. D. Frolkina},
     title = {Relative {Preimage} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {282--295},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a13/}
}
TY  - JOUR
AU  - O. D. Frolkina
TI  - Relative Preimage Problem
JO  - Matematičeskie zametki
PY  - 2006
SP  - 282
EP  - 295
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a13/
LA  - ru
ID  - MZM_2006_80_2_a13
ER  - 
%0 Journal Article
%A O. D. Frolkina
%T Relative Preimage Problem
%J Matematičeskie zametki
%D 2006
%P 282-295
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a13/
%G ru
%F MZM_2006_80_2_a13
O. D. Frolkina. Relative Preimage Problem. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 282-295. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a13/

[1] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, Illinois, 1971 | MR | Zbl

[2] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics, 14, Amer. Math. Soc., Providence, RI, 1983 | MR

[3] T. H. Kiang, The Theory of Fixed Point Classes, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[4] J. Nielsen, “Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, I”, Acta Math., 50 (1927), 189–358 | DOI | MR | Zbl

[5] S. A. Bogatyi, D. L. Gonsalves, Kh. Tsishang, “Teoriya sovpadeniya: problema minimizatsii”, Tr. MIAN, 225, 1999, 52–86 | MR | Zbl

[6] C. K. McCord, “A Nielsen theory for intersection numbers”, Fund. Math., 152:2 (1997), 117–150 | MR | Zbl

[7] R. Dobreńko, Z. Kucharski, “On the generalization of the Nielsen number”, Fund. Math., 134:1 (1990), 1–14 | MR | Zbl

[8] H. Hopf, “Zur Topologie der Abbildungen von Mannigfaltigkeiten. II. Klasseninvarianten von Abbildungen”, Math. Ann., 102:4 (1929), 562–623 | MR | Zbl

[9] R. Brooks, Coincidences, Roots and Fixed Points, Doctoral Dissertation, Univ. of California, Los Angeles, 1967

[10] H. Schirmer, “A relative Nielsen number”, Pacific J. Math., 122:2 (1986), 459–473 | MR | Zbl

[11] H. Schirmer, “On the location of fixed points on pairs of spaces”, Topology Appl., 30:3 (1988), 253–266 | DOI | MR | Zbl

[12] H. Schirmer, “A survey of relative Nielsen fixed point theory”, Nielsen theory and dynamical systems, Contemporary Mathematics, 152, ed. C. McCord, Amer. Math. Soc., Providence, RI, 1993, 291–309 | MR | Zbl

[13] C. G. Jang, S. Lee, “A relative Nielsen number in coincidence theory”, J. Korean Math. Soc., 32:2 (1995), 171–181 | MR | Zbl

[14] J. Jezierski, “The relative coincidence Nielsen number”, Fund. Math., 149:1 (1996), 1–18 | MR | Zbl

[15] J. Guo, P. R. Heath, “Coincidence theory on the complement”, Topology Appl., 95:3 (1999), 229–250 | DOI | MR | Zbl

[16] K.-Y. Yang, “A relative root Nielsen number”, Comm. Korean Math. Soc., 11:1 (1996), 245–252 | MR | Zbl

[17] K.-Y. Yang, “The minimum theorem for the relative root Nielsen number”, Comm. Korean Math. Soc., 12:3 (1997), 701–707 | MR | Zbl

[18] R. F. Brown, H. Schirmer, “Nielsen theory of roots of maps of pairs”, Topology Appl., 92:3 (1999), 247–274 | DOI | MR | Zbl

[19] H. Schirmer, “Nielsen numbers for maps of triads”, Topology Appl., 52:2 (1993), 181–202 | DOI | MR | Zbl

[20] J. Jezierski, “The Nielsen coincidence theory on topological manifolds”, Fund. Math., 143:2 (1993), 167–178 | MR | Zbl

[21] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[22] C. K. McCord, “The three faces of Nielsen: Coincidences, intersections and preimages”, Topology Appl., 103:2 (2000), 155–177 | DOI | MR | Zbl

[23] B. Jiang, “Fixed points and braids”, Invent. Math., 75:1 (1984), 69–74 | DOI | MR | Zbl

[24] B. Jiang, “Fixed points and braids, II”, Math. Ann., 272:2 (1985), 249–256 | DOI | MR | Zbl

[25] S. A. Bogatyi, D. L. Gonsalves, E. A. Kudryavtseva, Kh. Tsishang, “Minimalnoe chislo proobrazov pri otobrazheniyakh mezhdu poverkhnostyami”, Matem. zametki, 75:1 (2004), 13–19 | MR | Zbl

[26] U. Koschorke, Nielsen coincidence theory in arbitrary codimensions, Preprint 306/2003, Universität Siegen | MR

[27] U. Koschorke, Geometric and homotopy theoretic methods in Nielsen coincidence theory, Preprint 308/2004, Universität Siegen | MR

[28] H. Schirmer, “Bemerkungen zur Homotopietheorie der Koinzidenzen mehrerer Abbildungen”, Arch. Math., 11 (1960), 56–64 | DOI | MR | Zbl

[29] O. D. Frolkina, “O zadache sovpadeniya konechnogo chisla otobrazhenii”, Tr. XXVI konf. molodykh uchenykh mekhaniko-matematicheskogo fakulteta MGU im. M. V. Lomonosova, t. II, Izd-vo mekh.-mat. f-ta MGU, M., 2004, 234–238

[30] J. Guo, Relative and Equivariant Coincidence Theory, Ph. D. Thesis, memorial University of Newfoundland, 1996

[31] J. Vick, Homology theory, Graduate Text Math., 145, Springer-Verlag, Berlin–Heidelberg–New York, 1994 | MR | Zbl