Finitely Smooth Normal Form of an Autonomous System with Two Pure Imaginary Roots
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 270-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finitely smooth normalization of a system of ordinary differential equations whose linear part has two eigenvalues, while the other eigenvalues lie outside the imaginary axis.
Keywords: autonomous system of ODE, normal form, singular point, weakly degenerate system, finitely smooth equivalence.
@article{MZM_2006_80_2_a12,
     author = {V. S. Samovol},
     title = {Finitely {Smooth} {Normal} {Form}  of an {Autonomous} {System} with {Two} {Pure} {Imaginary} {Roots}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {270--281},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a12/}
}
TY  - JOUR
AU  - V. S. Samovol
TI  - Finitely Smooth Normal Form  of an Autonomous System with Two Pure Imaginary Roots
JO  - Matematičeskie zametki
PY  - 2006
SP  - 270
EP  - 281
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a12/
LA  - ru
ID  - MZM_2006_80_2_a12
ER  - 
%0 Journal Article
%A V. S. Samovol
%T Finitely Smooth Normal Form  of an Autonomous System with Two Pure Imaginary Roots
%J Matematičeskie zametki
%D 2006
%P 270-281
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a12/
%G ru
%F MZM_2006_80_2_a12
V. S. Samovol. Finitely Smooth Normal Form  of an Autonomous System with Two Pure Imaginary Roots. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 270-281. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a12/

[1] V. S. Samovol, “Normalnaya forma avtonomnoi sistemy s odnim nulevym kornem”, Matem. zametki, 75:5 (2004), 711–720 | MR | Zbl

[2] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[3] A. D. Bryuno, “Analiticheskaya forma differentsialnykh uravnenii”, Tr. MMO, 25, 1971, 119–262 | MR | Zbl

[4] V. S. Samovol, “Ekvivalentnost sistem differentsialnykh uravnenii v okrestnosti osoboi tochki”, Tr. MMO, 44, 1982, 213–234 | MR | Zbl

[5] G. R. Belitskii, “Gladkaya ekvivalentnost rostkov vektornykh polei”, Funktsion. analiz i ego prilozh., 20:4 (1986), 1–8 | MR

[6] A. N. Kuznetsov, “Differentsiruemye resheniya vyrozhdayuschikhsya sistem obyknovennykh uravnenii”, Funktsion. analiz i ego prilozh., 6:2 (1972), 41–51 | MR | Zbl

[7] A. D. Bryuno, V. Yu. Petrovich, Normalnye formy sistemy ODU, Preprint Instituta prikladnoi matematiki im. M. V. Keldysha RAN No 18, 2000

[8] V. S. Samovol, “O neobkhodimom i dostatochnom uslovii gladkoi linearizatsii avtonomnoi sistemy na ploskosti v okrestnosti osoboi tochki”, Matem. zametki, 46:1 (1989), 67–77 | MR | Zbl