Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_2_a10, author = {B. A. Omirov}, title = {Thin {Leibniz} {Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {251--261}, publisher = {mathdoc}, volume = {80}, number = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a10/} }
B. A. Omirov. Thin Leibniz Algebras. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a10/
[1] M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application á l'étude de la variété des algèbres de Lie nilpotentes”, Bull. Soc. Math. France, 98 (1970), 81–116 | MR | Zbl
[2] M. Goze, Yu. Khakimjanov, Nilpotent Lie algebras, 361, Kluwer Academic Publishers, 1996 | MR | Zbl
[3] Sh. A. Ayupov, B. A. Omirov, “O nekotorykh klassakh nilpotentnykh algebr Leibnitsa”, Sib. matem. zh., 42:1 (2001), 18–29 | MR | Zbl
[4] K. Khakimdjanova, Yu. Khakimdjanov, “Sur une classe d'algèbres de Lie de dimension infinie”, Comm. Algebra, 29:1 (2001), 177–191 | DOI | MR | Zbl
[5] A. Fialowski, “On the cohomology of infinite-dimensional nilpotent Lie algebras”, Adv. Math., 97 (1993), 267–277 | DOI | MR | Zbl
[6] A. Fialowski, “Deformation of some infinite-dimensional Lie algebras”, J. Math. Phys., 31:6 (1990), 1340–1343 | DOI | MR | Zbl
[7] D. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl
[8] J. R. Gómez, M. Goze, Y. Khakimdjanov, “On the $k$-abelian filiform Lie algebras”, Comm. Algebra, 25:2 (1997), 431–450 | DOI | MR
[9] S. Albeverio, B. A. Omirov, I. S. Rakhimov, “Varieties of nilpotent complex Leibniz algebras of dimension less than five”, Comm. Algebra, 33:5 (2005), 1575–1585 | DOI | MR | Zbl