Thin Leibniz Algebras
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 251-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, analogs of $0$-filiform and filiform Leibniz algebras in the infinite-dimensional case are introduced and studied. It is proved that, to classify complex thin Leibniz algebras, it suffices to study some special transformations of bases.
Keywords: potentially nilpotent Leibniz algebra, filiform Leibniz algebra, thin Leibniz algebra, central series, affine variety, Zariski topology.
@article{MZM_2006_80_2_a10,
     author = {B. A. Omirov},
     title = {Thin {Leibniz} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--261},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a10/}
}
TY  - JOUR
AU  - B. A. Omirov
TI  - Thin Leibniz Algebras
JO  - Matematičeskie zametki
PY  - 2006
SP  - 251
EP  - 261
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a10/
LA  - ru
ID  - MZM_2006_80_2_a10
ER  - 
%0 Journal Article
%A B. A. Omirov
%T Thin Leibniz Algebras
%J Matematičeskie zametki
%D 2006
%P 251-261
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a10/
%G ru
%F MZM_2006_80_2_a10
B. A. Omirov. Thin Leibniz Algebras. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a10/

[1] M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application á l'étude de la variété des algèbres de Lie nilpotentes”, Bull. Soc. Math. France, 98 (1970), 81–116 | MR | Zbl

[2] M. Goze, Yu. Khakimjanov, Nilpotent Lie algebras, 361, Kluwer Academic Publishers, 1996 | MR | Zbl

[3] Sh. A. Ayupov, B. A. Omirov, “O nekotorykh klassakh nilpotentnykh algebr Leibnitsa”, Sib. matem. zh., 42:1 (2001), 18–29 | MR | Zbl

[4] K. Khakimdjanova, Yu. Khakimdjanov, “Sur une classe d'algèbres de Lie de dimension infinie”, Comm. Algebra, 29:1 (2001), 177–191 | DOI | MR | Zbl

[5] A. Fialowski, “On the cohomology of infinite-dimensional nilpotent Lie algebras”, Adv. Math., 97 (1993), 267–277 | DOI | MR | Zbl

[6] A. Fialowski, “Deformation of some infinite-dimensional Lie algebras”, J. Math. Phys., 31:6 (1990), 1340–1343 | DOI | MR | Zbl

[7] D. Fuks, Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR | Zbl

[8] J. R. Gómez, M. Goze, Y. Khakimdjanov, “On the $k$-abelian filiform Lie algebras”, Comm. Algebra, 25:2 (1997), 431–450 | DOI | MR

[9] S. Albeverio, B. A. Omirov, I. S. Rakhimov, “Varieties of nilpotent complex Leibniz algebras of dimension less than five”, Comm. Algebra, 33:5 (2005), 1575–1585 | DOI | MR | Zbl