Lifting of Solutions of an Exponential Congruence
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 76-86
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, a polynomial algorithm is suggested for
reducing the problem of taking the discrete logarithm in the ring
of algebraic integers modulo a power of a prime ideal to a
similar problem with the power equal to one.
Explicit formulas are
obtained; instead of the Fermat quotients, in the case of residues
in the ring of rational integers, these formulas use other
polynomially computable logarithmic functions, like the
$\mathfrak{p}$-adic logarithm.
Mots-clés :
Polynomial algorithm, Fermat quotients
Keywords: discrete logarithm, ring of algebraic integers, $\mathfrak{p}$-adic logarithm.
Keywords: discrete logarithm, ring of algebraic integers, $\mathfrak{p}$-adic logarithm.
@article{MZM_2006_80_1_a9,
author = {I. A. Popovyan},
title = {Lifting of {Solutions} of an {Exponential} {Congruence}},
journal = {Matemati\v{c}eskie zametki},
pages = {76--86},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a9/}
}
I. A. Popovyan. Lifting of Solutions of an Exponential Congruence. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 76-86. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a9/