Lifting of Solutions of an Exponential Congruence
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 76-86
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, a polynomial algorithm is suggested for reducing the problem of taking the discrete logarithm in the ring of algebraic integers modulo a power of a prime ideal to a similar problem with the power equal to one. Explicit formulas are obtained; instead of the Fermat quotients, in the case of residues in the ring of rational integers, these formulas use other polynomially computable logarithmic functions, like the $\mathfrak{p}$-adic logarithm.
Mots-clés :
Polynomial algorithm, Fermat quotients
Keywords: discrete logarithm, ring of algebraic integers, $\mathfrak{p}$-adic logarithm.
Keywords: discrete logarithm, ring of algebraic integers, $\mathfrak{p}$-adic logarithm.
@article{MZM_2006_80_1_a9,
author = {I. A. Popovyan},
title = {Lifting of {Solutions} of an {Exponential} {Congruence}},
journal = {Matemati\v{c}eskie zametki},
pages = {76--86},
year = {2006},
volume = {80},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a9/}
}
I. A. Popovyan. Lifting of Solutions of an Exponential Congruence. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 76-86. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a9/
[1] H. Riesel, “Some soluble cases of the discrete logarithm problem”, BIT, 28:4 (1988) | DOI | MR
[2] M. A. Cherepnëv, “O nekotorom svoistve diskretnogo logarifma”, Tez. dokl. XII mezhd. konf. “Problemy teoreticheskoi kibernetiki”, N. Novgorod, 1999
[3] Yu. V. Nesterenko, “Chastnye Ferma i $p$-adicheskie logarifmy”, Trudy po diskretnoi matematike, 5, Fizmatlit, M., 2002, 173–188
[4] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1964 | MR
[5] E. Artin, J. Tate, Class Field Theory, Benjamin, N.Y.–Amsterdam, 1967 | MR | Zbl