Semiclassical Spectral Series
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 69-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the spectral problem for the Schrödinger operator describing a charged particle confined by a homogeneous magnetic field to a certain two-dimensional symmetric surface. Spectral asymptotic series are calculated for either strong or weak magnetic field.
Keywords: Schrödinger operator, spectral problem, charged particle, WKB asymptotics, magnetic field, surface of revolution.
@article{MZM_2006_80_1_a8,
     author = {R. V. Nekrasov},
     title = {Semiclassical {Spectral} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {69--75},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a8/}
}
TY  - JOUR
AU  - R. V. Nekrasov
TI  - Semiclassical Spectral Series
JO  - Matematičeskie zametki
PY  - 2006
SP  - 69
EP  - 75
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a8/
LA  - ru
ID  - MZM_2006_80_1_a8
ER  - 
%0 Journal Article
%A R. V. Nekrasov
%T Semiclassical Spectral Series
%J Matematičeskie zametki
%D 2006
%P 69-75
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a8/
%G ru
%F MZM_2006_80_1_a8
R. V. Nekrasov. Semiclassical Spectral Series. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a8/

[1] M. S. Agranovich, “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990, 5–130 | MR

[2] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[3] B. Hellfer, Theorie spectrale pour des operateurs globalement elliptiques, Astérisque, 1984

[4] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR

[5] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[6] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora Maslova, Nauka, M., 1978 | MR

[7] S. Yu. Dobrokhotov, A. I. Shafarevich, “Kvaziklassicheskoe kvantovanie invariantnykh izotropnykh mnogoobrazii gamiltonovykh sistem”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998