Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_1_a8, author = {R. V. Nekrasov}, title = {Semiclassical {Spectral} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {69--75}, publisher = {mathdoc}, volume = {80}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a8/} }
R. V. Nekrasov. Semiclassical Spectral Series. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a8/
[1] M. S. Agranovich, “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990, 5–130 | MR
[2] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR
[3] B. Hellfer, Theorie spectrale pour des operateurs globalement elliptiques, Astérisque, 1984
[4] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR
[5] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[6] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora Maslova, Nauka, M., 1978 | MR
[7] S. Yu. Dobrokhotov, A. I. Shafarevich, “Kvaziklassicheskoe kvantovanie invariantnykh izotropnykh mnogoobrazii gamiltonovykh sistem”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998