Solvability of the Boundary-Value Problem
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 60-68

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the boundary-value problem for a string-beam model is studied. The model is described by an equation of orders 2 and 4 on different edges of an arbitrary graph. Criteria for the problem to be degenerate and nondegenerate are obtained; in particular, it is proved that the nondegeneracy of the problem is equivalent to the maximum principle.
Keywords: geometric graph (network), ordinary differential equation on a graph, boundary-value problem, nondegeneracy, degeneracy, maximum principle.
@article{MZM_2006_80_1_a7,
     author = {K. P. Lazarev and T. V. Beloglazova},
     title = {Solvability of the {Boundary-Value} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {60--68},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a7/}
}
TY  - JOUR
AU  - K. P. Lazarev
AU  - T. V. Beloglazova
TI  - Solvability of the Boundary-Value Problem
JO  - Matematičeskie zametki
PY  - 2006
SP  - 60
EP  - 68
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a7/
LA  - ru
ID  - MZM_2006_80_1_a7
ER  - 
%0 Journal Article
%A K. P. Lazarev
%A T. V. Beloglazova
%T Solvability of the Boundary-Value Problem
%J Matematičeskie zametki
%D 2006
%P 60-68
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a7/
%G ru
%F MZM_2006_80_1_a7
K. P. Lazarev; T. V. Beloglazova. Solvability of the Boundary-Value Problem. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 60-68. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a7/