On the Normalizing Multiplier of the Generalized Jackson Kernel
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 20-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of evaluating the normalizing multiplier $$ \gamma_{n,k} = \frac1 \pi \int_{-\pi}^\pi {\biggl(\frac{\sin\frac{n t}2}{\sin\frac t 2}\biggr)}^{2k}\,dt $$ for the generalized Jackson kernel $J_{n,k}(t)$. We obtain the explicit formula $$ \gamma_{n,k} = 2 \sum_{p=0}^{[k-\frac k n]} (-1)^p \binom{2k}p \binom{k(n+1) - np - 1}{k(n-1) - np} $$ and the representation $$ \gamma_{n,k} = \sqrt{\frac{24}{\pi}}\cdot\frac {(n-1)^{2k-1}}{\sqrt{2k-1}}\left[ 1 - \frac 1{8}\cdot\frac{1}{2k-1} + \omega(n,k)\right], $$ where $$ |{\omega(n,k)}|\frac{4}{(2k-1)\sqrt{\ln(2k-1)}}+ \sqrt{12\pi}\cdot\frac{k^\frac{3}{2}}{n-1}\left(1+ \frac{1}{n-1}\right)^{2k-2}. $$
Keywords: approximation theory, generalized Jackson kernel.
@article{MZM_2006_80_1_a2,
     author = {M. S. Viazovskaya and N. S. Pupashenko},
     title = {On the {Normalizing} {Multiplier} of the {Generalized} {Jackson} {Kernel}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a2/}
}
TY  - JOUR
AU  - M. S. Viazovskaya
AU  - N. S. Pupashenko
TI  - On the Normalizing Multiplier of the Generalized Jackson Kernel
JO  - Matematičeskie zametki
PY  - 2006
SP  - 20
EP  - 28
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a2/
LA  - ru
ID  - MZM_2006_80_1_a2
ER  - 
%0 Journal Article
%A M. S. Viazovskaya
%A N. S. Pupashenko
%T On the Normalizing Multiplier of the Generalized Jackson Kernel
%J Matematičeskie zametki
%D 2006
%P 20-28
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a2/
%G ru
%F MZM_2006_80_1_a2
M. S. Viazovskaya; N. S. Pupashenko. On the Normalizing Multiplier of the Generalized Jackson Kernel. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a2/

[1] N. I. Akhiezer, Lektsii po teorii aproksimatsii, Nauka, M., 1965 | MR

[2] R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer-Verlag, Berlin, 1993 | MR

[3] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[4] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[6] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[7] I. A. Shevchuk, Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992

[8] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN. SSSR. Ser. matem., 15:3 (1951), 219–242 | Zbl

[9] A. V. Skorokhod, N. P. Slobodyanyuk, Predelnye teoremy dlya sluchainykh bluzhdanii, Naukova dumka, Kiev, 1970 | MR | Zbl