On Some Properties of Systems
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 115-118
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the system of integral equations of the form $Ax+Vx=\nobreak \psi$, where $V$ is the Volterra operator with kernel of convolution type and $A$ is a constant matrix, $\det A=\nobreak 0$. We prove an existence theorem and establish necessary and sufficient conditions for the kernel of the operator of the system to be trivial.
Keywords:
Volterra integral equation, left regularizing operator, Fredholm operator, integro-differential operator.
Mots-clés : convolution-type kernel
Mots-clés : convolution-type kernel
@article{MZM_2006_80_1_a13,
author = {V. F. Chistyakov},
title = {On {Some} {Properties} of {Systems}},
journal = {Matemati\v{c}eskie zametki},
pages = {115--118},
year = {2006},
volume = {80},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a13/}
}
V. F. Chistyakov. On Some Properties of Systems. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 115-118. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a13/
[1] M. S. Nikolskii, “O sistemakh lineinykh integralnykh uravnenii tipa Volterra v svertkakh”, Tr. MIRAN im. V. A. Steklova, 220, 1998, 210–216
[2] V. F. Chistyakov, “O razreshimosti sistem integralnykh uravnenii Volterra 4 roda. I”, Differents. uravneniya, 38:5 (2002), 698–707 | MR | Zbl
[3] M. L. Krasnov, Integralnye uravneniya, Nauka, M., 1975 | MR | Zbl
[4] N. N. Luzin, “K izucheniyu matrichnoi sistemy teorii differentsialnykh uravnenii”, Avtomatika i telemekhanika, 1940, no. 5, 4–66 | MR | Zbl