On the Existence of a Variational Principle
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 87-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using methods of nonlinear functional analysis, we define the structure of an evolution operator equation of second order that can be formulated in direct variational terms.
Keywords: operator equation with time second derivative, variational principle, operator potential
Mots-clés : Gâteaux derivative, Volterra equation.
@article{MZM_2006_80_1_a10,
     author = {V. M. Savchin and S. A. Budochkina},
     title = {On the {Existence} of a {Variational} {Principle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {87--94},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/}
}
TY  - JOUR
AU  - V. M. Savchin
AU  - S. A. Budochkina
TI  - On the Existence of a Variational Principle
JO  - Matematičeskie zametki
PY  - 2006
SP  - 87
EP  - 94
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/
LA  - ru
ID  - MZM_2006_80_1_a10
ER  - 
%0 Journal Article
%A V. M. Savchin
%A S. A. Budochkina
%T On the Existence of a Variational Principle
%J Matematičeskie zametki
%D 2006
%P 87-94
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/
%G ru
%F MZM_2006_80_1_a10
V. M. Savchin; S. A. Budochkina. On the Existence of a Variational Principle. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/

[1] V. M. Savchin, Matematicheskie metody mekhaniki beskonechnomernykh nepotentsialnykh sistem, Izd-vo UDN, M., 1991 | MR

[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl

[3] V. M. Filippov, V. M. Savchin, S. G. Shorokhov, “Variatsionnye printsipy dlya nepotentsialnykh operatorov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Nov. dostizh., 40, VINITI, M., 1992 | MR | Zbl

[4] V. Volterra, Leçons sur les Fonctions de Lignes, Gautier-Villars, Paris, 1913

[5] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR