On the Existence of a Variational Principle
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 87-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using methods of nonlinear functional analysis, we define the structure of an evolution operator equation of second order that can be formulated in direct variational terms.
Keywords: operator equation with time second derivative, variational principle, operator potential
Mots-clés : Gâteaux derivative, Volterra equation.
@article{MZM_2006_80_1_a10,
     author = {V. M. Savchin and S. A. Budochkina},
     title = {On the {Existence} of a {Variational} {Principle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {87--94},
     year = {2006},
     volume = {80},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/}
}
TY  - JOUR
AU  - V. M. Savchin
AU  - S. A. Budochkina
TI  - On the Existence of a Variational Principle
JO  - Matematičeskie zametki
PY  - 2006
SP  - 87
EP  - 94
VL  - 80
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/
LA  - ru
ID  - MZM_2006_80_1_a10
ER  - 
%0 Journal Article
%A V. M. Savchin
%A S. A. Budochkina
%T On the Existence of a Variational Principle
%J Matematičeskie zametki
%D 2006
%P 87-94
%V 80
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/
%G ru
%F MZM_2006_80_1_a10
V. M. Savchin; S. A. Budochkina. On the Existence of a Variational Principle. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/

[1] V. M. Savchin, Matematicheskie metody mekhaniki beskonechnomernykh nepotentsialnykh sistem, Izd-vo UDN, M., 1991 | MR

[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl

[3] V. M. Filippov, V. M. Savchin, S. G. Shorokhov, “Variatsionnye printsipy dlya nepotentsialnykh operatorov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Nov. dostizh., 40, VINITI, M., 1992 | MR | Zbl

[4] V. Volterra, Leçons sur les Fonctions de Lignes, Gautier-Villars, Paris, 1913

[5] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR