On the Existence of a Variational Principle
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 87-94
Cet article a éte moissonné depuis la source Math-Net.Ru
Using methods of nonlinear functional analysis, we define the structure of an evolution operator equation of second order that can be formulated in direct variational terms.
Keywords:
operator equation with time second derivative, variational principle, operator potential
Mots-clés : Gâteaux derivative, Volterra equation.
Mots-clés : Gâteaux derivative, Volterra equation.
@article{MZM_2006_80_1_a10,
author = {V. M. Savchin and S. A. Budochkina},
title = {On the {Existence} of a {Variational} {Principle}},
journal = {Matemati\v{c}eskie zametki},
pages = {87--94},
year = {2006},
volume = {80},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/}
}
V. M. Savchin; S. A. Budochkina. On the Existence of a Variational Principle. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 87-94. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a10/
[1] V. M. Savchin, Matematicheskie metody mekhaniki beskonechnomernykh nepotentsialnykh sistem, Izd-vo UDN, M., 1991 | MR
[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl
[3] V. M. Filippov, V. M. Savchin, S. G. Shorokhov, “Variatsionnye printsipy dlya nepotentsialnykh operatorov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Nov. dostizh., 40, VINITI, M., 1992 | MR | Zbl
[4] V. Volterra, Leçons sur les Fonctions de Lignes, Gautier-Villars, Paris, 1913
[5] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR