Jackson-Type Inequalities and Widths of Function Classes in~$L_2$
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sharp Jackson-type inequalities obtained by Taikov in the space $L_2$ and containing the best approximation and the modulus of continuity of first order are generalized to moduli of continuity of $k$th order $(k=2,3,\dots)$. We also obtain exact values of the $n$-widths of the function classes $F(k,r,\Phi)$ and $\mathcal{F}_k^r (h)$, which are a generalization of the classes $F(1,r,\Phi)$ and $\mathcal{F}^r_1(h)$ studied by Taikov.
Keywords: Jackson-type inequalities, width of function classes, modulus of continuity of $k$th order, periodic function, Bernstein, Kolmogorov, Gelfand $n$-widths.
@article{MZM_2006_80_1_a1,
     author = {S. B. Vakarchuk},
     title = {Jackson-Type {Inequalities} and {Widths} of {Function} {Classes} in~$L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a1/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Jackson-Type Inequalities and Widths of Function Classes in~$L_2$
JO  - Matematičeskie zametki
PY  - 2006
SP  - 11
EP  - 19
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a1/
LA  - ru
ID  - MZM_2006_80_1_a1
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Jackson-Type Inequalities and Widths of Function Classes in~$L_2$
%J Matematičeskie zametki
%D 2006
%P 11-19
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a1/
%G ru
%F MZM_2006_80_1_a1
S. B. Vakarchuk. Jackson-Type Inequalities and Widths of Function Classes in~$L_2$. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 11-19. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a1/

[1] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522

[2] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[3] L. V. Taikov, “Strukturnye i konstruktivnye kharakteristiki funktsii iz $L_2$”, Matem. zametki, 25:2 (1979), 217–223 | MR

[4] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[5] V. V. Shalaev, “O poperechnikakh v $L_2$ klassov differentsiruemykh funktsii, opredelyaemykh modulyami nepreryvnosti vysshikh poryadkov”, Ukr. matem. zh., 43:1 (1991), 125–129 | MR | Zbl

[6] Kh. Yussef, “O nailuchshikh priblizheniyakh funktsii i znacheniyakh poperechnikov klassov funktsii v $L_2$”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Kalininskii gos. un-t, Kalinin, 1988, 100–114 | MR

[7] M. G. Esmaganbetov, “Poperechniki klassov iz $L_2[0,2\pi]$ i minimizatsiya tochnykh konstant v neravenstvakh tipa Dzheksona”, Matem. zametki, 65:6 (1999), 816–820 | MR | Zbl

[8] S. B. Vakarchuk, “O nailuchshikh polinomialnykh priblizheniyakh v $L_2$ nekotorykh klassov $2\pi$-periodicheskikh funktsii i tochnykh znacheniyakh ikh $n$-poperechnikov”, Matem. zametki, 70:3 (2001), 334–345 | MR | Zbl

[9] S. B. Vakarchuk, “O nailuchshikh polinomialnykh priblizheniyakh $2\pi$-periodicheskikh funktsii i tochnykh znacheniyakh $n$-poperechnikov funktsionalnykh klassov v prostranstve $L_2$”, Ukr. matem. zh., 54:12 (2002), 1603–1615 | MR | Zbl

[10] S. N. Vasilev, “Tochnoe neravenstvo Dzheksona–Stechkina v $L_2$ s modulem nepreryvnosti, porozhdennym proizvolnym konechno-raznostnym operatorom s postoyannymi koeffitsientami”, Dokl. RAN, 385:1 (2002), 11–14 | MR

[11] A. I. Stepanets, A. S. Serdyuk, “Pryamye i obratnye teoremy teorii priblizheniya funktsii v prostranstve $S^p$”, Ukr. matem. zh., 54:1 (2002), 106–124 | MR | Zbl

[12] S. B. Vakarchuk, A. N. Schitov, “Nailuchshie polinomialnye priblizheniya v $L_2$ i poperechniki nekotorykh klassov funktsii”, Ukr. matem. zh., 56:11 (2004), 1458–1466 | MR | Zbl

[13] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR

[14] A. Pinkus, $n$-Widths in Approximation Theory, Springer, Berlin, 1985 | MR