Two-Weight Inequalities for Convolution Operators
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
In
this paper, we prove
a theorem
on
the boundedness
of a convolution operator
in
a weighted
Lebesgue space
with kernel
satisfying
a certain version
of Hörmander's condition.
Keywords:
convolution operator, two-weight inequality, Euclidean space, singular integral.
Mots-clés : Lebesgue space
Mots-clés : Lebesgue space
@article{MZM_2006_80_1_a0,
author = {R. A. Bandaliev},
title = {Two-Weight {Inequalities} for {Convolution} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--10},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a0/}
}
R. A. Bandaliev. Two-Weight Inequalities for Convolution Operators. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a0/