Two-Weight Inequalities for Convolution Operators
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a theorem on the boundedness of a convolution operator in a weighted Lebesgue space with kernel satisfying a certain version of Hörmander's condition.
Keywords: convolution operator, two-weight inequality, Euclidean space, singular integral.
Mots-clés : Lebesgue space
@article{MZM_2006_80_1_a0,
     author = {R. A. Bandaliev},
     title = {Two-Weight {Inequalities} for {Convolution} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a0/}
}
TY  - JOUR
AU  - R. A. Bandaliev
TI  - Two-Weight Inequalities for Convolution Operators
JO  - Matematičeskie zametki
PY  - 2006
SP  - 3
EP  - 10
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a0/
LA  - ru
ID  - MZM_2006_80_1_a0
ER  - 
%0 Journal Article
%A R. A. Bandaliev
%T Two-Weight Inequalities for Convolution Operators
%J Matematičeskie zametki
%D 2006
%P 3-10
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a0/
%G ru
%F MZM_2006_80_1_a0
R. A. Bandaliev. Two-Weight Inequalities for Convolution Operators. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a0/