On prime numbers of special kind on short intervals
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 908-912
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose that the Riemann hypothesis holds. Suppose that $$ \psi_1(x)=\sum_{\substack{n\le x\\ \{(1/2)n^{1/c}\}<1/2}}\Lambda(n), $$ where $c$ is a real number, $1. We prove that, for $H>N^{1/2+10\varepsilon}$, $\varepsilon>0$, the following asymptotic formula is valid: $$ \psi_1(N+H)-\psi_1(N)=\frac H2\biggl(1+O\biggl(\frac1{N^\varepsilon}\biggr)\biggr). $$
@article{MZM_2006_79_6_a7,
author = {N. N. Mot'kina},
title = {On prime numbers of special kind on short intervals},
journal = {Matemati\v{c}eskie zametki},
pages = {908--912},
year = {2006},
volume = {79},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a7/}
}
N. N. Mot'kina. On prime numbers of special kind on short intervals. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 908-912. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a7/
[1] Vinogradov I. M., “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7(49):2 (1940), 365–372 | MR | Zbl
[2] Linnik Yu. V., “Ob odnoi teoreme teorii prostykh chisel”, Dokl. AN SSSR, 47 (1945), 7–8 | MR
[3] Kaufman R. M., “O raspredelenii $\{\sqrt p\}$”, Matem. zametki, 26:4 (1979), 497–504 | Zbl
[4] Gritsenko S. A., “Ob odnoi zadache I. M. Vinogradova”, Matem. zametki, 39:5 (1986), 625–640 | MR | Zbl
[5] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983
[6] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953