``Destruction'' of the solution of a~strongly nonlinear equation of pseudoparabolic type with double nonlinearity
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 879-899.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first initial-boundary value problem for multidimensional strongly nonlinear equations with double nonlinearity of pseudoparabolic type in a bounded domain with sufficiently smooth boundary. We prove the local solvability of this problem in the weak generalized sense. Depending on the nonlinearity and initial conditions under consideration, we prove the solvability of the equation in any finite cylinder $(x,t)\in\Omega\times[0,T]$ or the destruction of the solution in finite time.
@article{MZM_2006_79_6_a5,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {``Destruction'' of the solution of a~strongly nonlinear equation of pseudoparabolic type with double nonlinearity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {879--899},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a5/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - ``Destruction'' of the solution of a~strongly nonlinear equation of pseudoparabolic type with double nonlinearity
JO  - Matematičeskie zametki
PY  - 2006
SP  - 879
EP  - 899
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a5/
LA  - ru
ID  - MZM_2006_79_6_a5
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T ``Destruction'' of the solution of a~strongly nonlinear equation of pseudoparabolic type with double nonlinearity
%J Matematičeskie zametki
%D 2006
%P 879-899
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a5/
%G ru
%F MZM_2006_79_6_a5
M. O. Korpusov; A. G. Sveshnikov. ``Destruction'' of the solution of a~strongly nonlinear equation of pseudoparabolic type with double nonlinearity. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 879-899. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a5/

[1] Bonch-Bruevich V. L., Kalashnikov S. G., Fizika poluprovodnikov, Nauka, M., 1990

[2] Bass F. G., Bochkov V. S., Gurevich Yu. S., Elektrony i fonony v ogranichennykh poluprovodnikakh, Nauka, M., 1984

[3] Korpusov M. O., Sveshnikov A. G., “O razreshimosti silno nelineinogo uravneniya psevdoparabolicheskogo tipa s dvoinoi nelineinostyu”, ZhVMiMF, 43:7 (2003), 987–1004 | MR

[4] Korpusov M. O., ““Razrushenie” resheniya psevdoparabolicheskogo uravneniya s proizvodnoi po vremeni ot nelineinogo ellipticheskogo operatora”, ZhVMiMF, 42:12 (2002), 1788–1795 | MR | Zbl

[5] Korpusov M. O., “Globalnaya razreshimost i razrushenie za konechnoe vremya reshenii nelineinykh uravnenii psevdoparabolicheskogo tipa”, ZhVMiMF, 42:6 (2002), 849–866 | MR | Zbl

[6] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[7] Sviridyuk G. A., Fedorov V. E., “Analiticheskie polugruppy s yadrami i lineinye uravneniya tipa Soboleva”, Sib. matem. zh., 36:5 (1995), 1130–1145 | MR | Zbl

[8] Sviridyuk G. A., “Fazovye prostranstva polulineinykh uravnenii tipa Soboleva s otnositelno silno sektorialnym operatorom”, Algebra i analiz, 6:5 (1994), 252–272 | MR

[9] Sviridyuk G. A., Semenova I. N., “O razreshimosti neodnorodnoi zadachi dlya obobschennogo filtratsionnogo uravneniya Bussineska”, Differents. uravneniya, 24:9 (1988), 1607–1613 | MR

[10] Sviridyuk G. A., Kazak V. A., “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya uravneniya Khoffa”, Matem. zametki, 71:2 (2002), 292–297 | MR | Zbl

[11] Uravneniya sobolevskogo tipa, Sbornik nauchnykh rabot, ed. V. E. Fedorov, Chelyab. gos. un-t, Chelyabinsk, 2002 | MR

[12] Egorov I. E., Pyatkov S. G., Popov S. V., Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR

[13] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York–Basel–Hong Kong, 1999 | MR | Zbl

[14] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[15] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[16] Stefanelli U., “On a class of doubly nonlinear nonlocal evolution equations”, Differential Integral Equations, 15:8 (2002), 897–922 | MR | Zbl

[17] Showalter R. E., Monotone operators in Banach space and nonlinear differential equations, Mathematical Surveys and Monographs, 49, American Mathematical Society, 1997 | MR | Zbl

[18] Lyashko S. I., Obobschennoe upravlenie lineinymi sistemami, Naukova dumka, Kiev, 1998 | Zbl

[19] Kozhanov A. I., “Parabolicheskie uravneniya s nelineinym nelokalnym istochnikom”, Sib. matem. zh., 35:5 (1994), 1062–1073 | MR | Zbl

[20] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravnenii tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Matem. zametki, 65:1 (1999), 70 | MR | Zbl

[21] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “O kvazistatsionarnykh protsessakh v provodyaschikh sredakh bez dispersii”, ZhVMiMF, 40:8 (2000), 1237–1249 | MR | Zbl

[22] Korpusov M. O., Sveshnikov A. G., “Trekhmernye nelineinye evolyutsionnye uravneniya psevdoparabolicheskogo tipa v zadachakh matematicheskoi fiziki”, ZhVMiMF, 43:12 (2003), 1835–1869 | MR | Zbl

[23] Gladkov A. L., “Edinstvennost resheniya zadachi Koshi dlya nekotorykh kvazilineinykh psevdoparabolicheskikh uravnenii”, Matem. zametki, 60:3 (1996), 356 | MR | Zbl

[24] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR

[25] Pletner Yu. D., “Fundamentalnye resheniya operatorov tipa Soboleva i nekotorye nachalno-kraevye zadachi”, ZhVMiMF, 32:12 (1992), 1885–1899 | MR | Zbl

[26] Pyatkov S. G., “Kraevye zadachi dlya nekotorykh uravnenii i sistem, voznikayuschikh v teorii elektricheskikh tsepei”, Aktualnye voprosy sovremennoi matematiki, 1995, no. 1, 121–133 | Zbl

[27] Guowang C., Shubin W., “Existence and non-existence of global solutions for nonlinear hyperbolic equations of higher order”, Comm. Math. Univ. Carolinae, 36:3 (1995), 475–487 | Zbl

[28] Gabov S. A., Novye zadachi matematicheskoi teorii voln, Fizmatgiz, M., 1998 | Zbl

[29] Fujita H., “On the blowing up of solutions to the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Univ. Tokyo. Sect. IA, 13 (1966), 109–124 | MR | Zbl

[30] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational. Mech. Analys., 51 (1973), 371–386 | MR | Zbl

[31] Amann H., Fila M., “A Fujita-type theorem for the Laplace equation with a dynamical boundary condition”, Acta Math. Univ. Comenianae, 66:2 (1997), 321–328 | MR | Zbl

[32] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[33] Rossi J. D., “The blow-up rate for a semilinear parabolic equation with a nonlinear boundary condition”, Acta. Math. Univ. Comenianae, 67:2 (1998), 343–350 | MR | Zbl

[34] Korpusov M. O., Sveshnikov A. G., “O razrushenii za konechnoe vremya resheniya nachalno-kraevoi zadachi dlya polulineinogo uravneniya sostavnogo tipa”, ZhVMiMF, 40:11 (2000), 1716–1724 | MR | Zbl

[35] Korpusov M. O., “K voprosu o razrushenii za konechnoe vremya resheniya zadachi Koshi dlya psevdoparabolicheskogo uravneniya $Au_t=F(u)$”, Differents. uravneniya, 38:12 (2002), 1–6 | MR

[36] Egorov Yu. V., Kondratiev V. A., “On blow-up solutions for parabolic equations of second order”, Differential Equations, Asymptotic Analysis and Mathematical Physics, Mathematical Research, 100, eds. M. Demuth, B.-W. Shulxe, Akademie Verlag, Berlin, 1997, 77–84 | MR | Zbl

[37] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii differentsialnykh neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR

[38] Laptev G. G., “Ob otsutstvii reshenii odnogo klassa singulyarnykh polulineinykh differentsialnykh neravenstv”, Tr. MIAN, 232, Nauka, M., 2001, 223–235 | MR | Zbl

[39] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[40] Postnikov M. M., Lektsii po geometrii, Semestr 2. Lineinaya algebra, Nauka, M., 1986 | MR | Zbl

[41] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR

[42] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva, Nauka, M., 1988 | MR | Zbl

[43] Demidovich V. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[44] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[45] Pokhozhaev S. I., “O sobstvennykh funktsiyakh kvazilineinykh ellipticheskikh zadach”, Matem. sb., 82:2 (1970), 192–212

[46] Lindqvist P., “On the equation $\operatorname{div}(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$”, Proc. Amer. Math. Soc., 109 (1990), 157–164 | DOI | MR | Zbl