On the boundedness below of trigonometric polynomials of best approximation
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 870-878
Voir la notice de l'article provenant de la source Math-Net.Ru
As A. S. Belov proved, the partial sums of an even $2\pi$-periodic function f expanded in a Fourier series with convex coefficients $\{a_n\}_{n=0}^\infty$, are uniformly bounded below if the conditions $a_n = O(n^{-1})$, $n\to\infty$, are satisfied; moreover, this assertion is no longer valid if the exponent $-1$ in this condition is replaced by a greater one. In this paper, we obtain analogs of these results for trigonometric polynomials of best approximation to the function $f$ in the metric of $L_{2\pi}^1$.
@article{MZM_2006_79_6_a4,
author = {V. S. Kolesnikov},
title = {On the boundedness below of trigonometric polynomials of best approximation},
journal = {Matemati\v{c}eskie zametki},
pages = {870--878},
publisher = {mathdoc},
volume = {79},
number = {6},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a4/}
}
V. S. Kolesnikov. On the boundedness below of trigonometric polynomials of best approximation. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 870-878. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a4/