On the boundedness below of trigonometric polynomials of best approximation
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 870-878
Cet article a éte moissonné depuis la source Math-Net.Ru
As A. S. Belov proved, the partial sums of an even $2\pi$-periodic function f expanded in a Fourier series with convex coefficients $\{a_n\}_{n=0}^\infty$, are uniformly bounded below if the conditions $a_n = O(n^{-1})$, $n\to\infty$, are satisfied; moreover, this assertion is no longer valid if the exponent $-1$ in this condition is replaced by a greater one. In this paper, we obtain analogs of these results for trigonometric polynomials of best approximation to the function $f$ in the metric of $L_{2\pi}^1$.
@article{MZM_2006_79_6_a4,
author = {V. S. Kolesnikov},
title = {On the boundedness below of trigonometric polynomials of best approximation},
journal = {Matemati\v{c}eskie zametki},
pages = {870--878},
year = {2006},
volume = {79},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a4/}
}
V. S. Kolesnikov. On the boundedness below of trigonometric polynomials of best approximation. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 870-878. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a4/
[1] Belov A. S., “O koeffitsientakh neotritsatelnykh kosinus-ryadov s neotritsatelnymi chastnymi summami”, Tr. MIAN, 190, Nauka, M., 1989, 3–21
[2] Belov A. S., “O chastnykh summakh trigonometricheskogo ryada s vypuklymi koeffitsientami”, Matem. zametki, 50:4 (1991), 21–27
[3] Belov A. S., “O trigonometricheskikh ryadakh s neogranichennymi snizu chastnymi summami”, Vestn. Ivanovskogo gos. un-ta, 2002, no. 3, 110–117 | MR
[4] Krein A. E., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR
[5] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[6] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR