The geometry of $L$-manifolds
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 854-869.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of almost contact metric structures generalizing those of quasi-Sasakian and trans-Sasakian structures is introduced and studied. Its subclass consisting of normal structures locally conformal to quasi-Sasakian structures is investigated in detail.
@article{MZM_2006_79_6_a3,
     author = {V. F. Kirichenko and V. A. Levkovets},
     title = {The geometry of $L$-manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--869},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a3/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - V. A. Levkovets
TI  - The geometry of $L$-manifolds
JO  - Matematičeskie zametki
PY  - 2006
SP  - 854
EP  - 869
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a3/
LA  - ru
ID  - MZM_2006_79_6_a3
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A V. A. Levkovets
%T The geometry of $L$-manifolds
%J Matematičeskie zametki
%D 2006
%P 854-869
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a3/
%G ru
%F MZM_2006_79_6_a3
V. F. Kirichenko; V. A. Levkovets. The geometry of $L$-manifolds. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 854-869. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a3/

[1] Blair D. E., “The theory of Quasi-Sasakian structures”, J. Differential Geom., 1 (1967), 331–345 | MR | Zbl

[2] Nakayama S., “On a classification of an almost contact metric structures”, Tensor, 9:1 (1968), 1–7 | MR

[3] Kirichenko V. F., Rodina E. V., “O geometrii transsasakievykh i pochti transsasakievykh mnogoobrazii”, Fundam. i prikl. matem., 3:3 (1997), 837–846 | MR | Zbl

[4] Kirichenko V. F., “O geometrii mnogoobrazii Kenmotsu”, Dokl. RAN, 380:5 (2001), 585–587 | MR | Zbl

[5] Goldberg S., “Totally geodesic hypersurfaces of Kaehler manifolds”, Pacific J. Math., 27:2 (1968), 275–281 | MR | Zbl

[6] Kobayashi S., “Principal fibre bundle with the 1-dimensional toroidal group”, Tôhoku Math. J., 8 (1956), 29–45 | DOI | Zbl

[7] Kirichenko V. F., “Differentsialnaya geometriya glavnykh toroidalnykh rassloenii”, Fundam. i prikl. matem., 6:4 (2000), 1095–1120 | MR | Zbl

[8] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl

[9] Oubin̂a J. A., “New classes of almost contact metric structures”, Publ. Mat., 32:3–4 (1985), 187–193 | MR | Zbl

[10] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[11] Kirichenko V. F., “Aksioma $\Phi$-golomorfnykh ploskostei v kontaktnoi metricheskoi geometrii”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 711–734 | MR | Zbl

[12] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981

[13] Kenmotsu K., “A class of almost contact Riemannian manifolds”, Tôhoku Math. J., 24 (1972), 93–103 | DOI | MR | Zbl

[14] Kirichenko V. F., “Lokalno konformno-kelerovy mnogoobraziya postoyannoi golomorfnoi sektsionnoi krivizny”, Matem. sb., 182:3 (1991), 354–363