On matrix analogs of Fermat's little theorem
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 838-853.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem proved in this paper gives a congruence for the traces of powers of an algebraic integer for the case in which the exponent of the power is a prime power. The theorem implies a congruence in Gauss' form for the traces of the sums of powers of algebraic integers, generalizing many familiar versions of Fermat's little theorem. Applied to the traces of integer matrices, this gives a proof of Arnold's conjecture about the congruence of the traces of powers of such matrices for the case in which the exponent of the power is a prime power.
@article{MZM_2006_79_6_a2,
     author = {A. V. Zarelua},
     title = {On matrix analogs of {Fermat's} little theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {838--853},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a2/}
}
TY  - JOUR
AU  - A. V. Zarelua
TI  - On matrix analogs of Fermat's little theorem
JO  - Matematičeskie zametki
PY  - 2006
SP  - 838
EP  - 853
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a2/
LA  - ru
ID  - MZM_2006_79_6_a2
ER  - 
%0 Journal Article
%A A. V. Zarelua
%T On matrix analogs of Fermat's little theorem
%J Matematičeskie zametki
%D 2006
%P 838-853
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a2/
%G ru
%F MZM_2006_79_6_a2
A. V. Zarelua. On matrix analogs of Fermat's little theorem. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 838-853. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a2/

[1] Arnold V. I., “Dinamicheskaya sistema Ferma–Eilera i statistika arifmetiki geometricheskikh progressii”, Funktsion. analiz i ego prilozh., 37:1 (2003), 1–18 | Zbl

[2] Arnold V. I., “Topologiya algebry: kombinatorika operatsii vozvedeniya v kvadrat”, Funktsion. analiz i ego prilozh., 37:3 (2003), 20–35 | MR | Zbl

[3] Arnold V. I., Gruppy Eilera i arifmetika geometricheskikh progressii, MTsNMO, M., 2003

[4] Arnold V. I., “Topologiya i statistika formul arifmetiki”, UMN, 58:4 (2003), 3–28 | MR

[5] Arnold V. I., “Dinamika Ferma, arifmetika matrits, konechnaya okruzhnost i konechnaya ploskost Lobachevskogo”, Funktsion. analiz i ego prilozh., 38:1 (2004), 1–15 | MR | Zbl

[6] Arnold V. I., “Matrichnaya teorema Eilera–Ferma”, Izv. RAN. Ser. matem., 68:6 (2004), 61–70

[7] Arnold V. I., “Geometriya i dinamika polei Galua”, UMN, 59:6 (2004), 23–40 | MR

[8] Arnold V. I., “Number-theoretic turbulence in Fermat–Euler arithmetics and large Young diagrams geometry statistics”, J. Math. Fluid Mech., 7 (2005), S4–S50 | DOI | MR | Zbl

[9] Arnold V. I., “Ergodic and arithmetical properties of geometric progressions dynamics”, Moscow Math. J., 5:1 (2005), 5–22 (to appear) | MR | Zbl

[10] Arnold V. I., “On the matricial version of Fermat–Euler congruences”, Japanese J. Math., 2005 (to appear) | MR

[11] Algebraicheskaya teoriya chisel, eds. Kassels Dzh., Frëlikh A., Mir, M., 1969 | MR

[12] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[13] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR

[14] Serre J.-P., Corps locaux, Hermann, Paris, 1962 | MR | Zbl

[15] Zarisskii O., Samyuel P., Kommutativnaya algebra, T. I, II, IL, M., 1963

[16] Schönemann T., “Grundzüge einer allgemeinen Theorie der höhern Congruenze, deren Modul eine reelle Primzahl ist”, J. Reine Angew. Math., 31 (1846), 269–325

[17] Smyth S. J., “A coloring proof of a generalization of Fermat's Little Theorem”, Amer. Math. Monthly, 93:6 (1986), 469–471 | DOI | MR | Zbl

[18] Szele T., “Une généralisation de la congruence de Fermat”, Matematisk tidsskrift, B, 1948, 57–59 | MR | Zbl

[19] Dickson L. E., History of the Theory of Numbers, V. 1, Chelsea, New York, 1971

[20] Prasolov V. V., Mnogochleny, MTsNMO, M., 2003