Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_79_6_a11, author = {V. V. Shumilova}, title = {Compactness principle for periodic singular and fine structures}, journal = {Matemati\v{c}eskie zametki}, pages = {941--949}, publisher = {mathdoc}, volume = {79}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a11/} }
V. V. Shumilova. Compactness principle for periodic singular and fine structures. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 941-949. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a11/
[1] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl
[2] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | Zbl
[3] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl
[4] Shumilova V. V., “O povedenii sobstvennykh znachenii operatora s dvumya malymi parametrami pri usrednenii”, Materialy VII VNTK “Sovremennye problemy matematiki i estestvoznaniya”, NGTU, N. Novgorod, 2003, 22–23
[5] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[6] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl
[7] Shumilova V. V., “Nekotorye voprosy usredneniya zadach Dirikhle s dvumya malymi parametrami”, Materialy VIII VNTK “Sovremennye problemy matematiki i estestvoznaniya”, NGTU, N. Novgorod, 2004, 23–24