Compactness principle for periodic singular and fine structures
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 941-949
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the compactness principle in the variable space $L^2$ related to a periodic Borel measure. We assume that the periodic Borel measure determines a periodic singular or a fine structure. We prove the compactness principle for periodic singular and fine grids, box structures, and composite structures on the plane and in space.
@article{MZM_2006_79_6_a11,
author = {V. V. Shumilova},
title = {Compactness principle for periodic singular and fine structures},
journal = {Matemati\v{c}eskie zametki},
pages = {941--949},
publisher = {mathdoc},
volume = {79},
number = {6},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a11/}
}
V. V. Shumilova. Compactness principle for periodic singular and fine structures. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 941-949. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a11/