Compactness principle for periodic singular and fine structures
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 941-949

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the compactness principle in the variable space $L^2$ related to a periodic Borel measure. We assume that the periodic Borel measure determines a periodic singular or a fine structure. We prove the compactness principle for periodic singular and fine grids, box structures, and composite structures on the plane and in space.
@article{MZM_2006_79_6_a11,
     author = {V. V. Shumilova},
     title = {Compactness principle for periodic singular and fine structures},
     journal = {Matemati\v{c}eskie zametki},
     pages = {941--949},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a11/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - Compactness principle for periodic singular and fine structures
JO  - Matematičeskie zametki
PY  - 2006
SP  - 941
EP  - 949
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a11/
LA  - ru
ID  - MZM_2006_79_6_a11
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T Compactness principle for periodic singular and fine structures
%J Matematičeskie zametki
%D 2006
%P 941-949
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a11/
%G ru
%F MZM_2006_79_6_a11
V. V. Shumilova. Compactness principle for periodic singular and fine structures. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 941-949. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a11/